精英家教网 > 高中数学 > 题目详情
设x、y满足约束条件
2x+y≤2
x+y≥1
x≥0
,则使z=x+2y取得最大值时的最优解是(  )
A、(0,2)
B、(2,0)
C、(0,1)
D、(1,0)
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=x+2y得y=-
1
2
x+
z
2

平移直线y=-
1
2
x+
z
2
,由图象可知当直线y=-
1
2
x+
z
2
经过点A时,
直线y=-
1
2
x+
z
2
的截距最大,此时z最大,
x=0
2x+y=0
,解得
x=0
y=2

即A(0,2),
则z=x+2y取得最大值时的最优解是(0,2),
故选:A.
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=
x+4
-3
x-5
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于四面体ABCD,以下命题中,真命题的序号为
 
(填上所有真命题的序号)
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,正确的是(  )
A、“若xy=0,则x=0且y=0”的逆否命题
B、“若ac2>bc2则a>b”的逆命题
C、若“m>2,则不等式x2-2x+m>0的解集为R”
D、“正方形是菱形”的否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题为真命题的是(  )
①如果命题“?p”与命题“p∨q”都是真命题,那么命题q一定是真命题;
②“若x2+y2=0,则x,y全为0”的否命题;
③“若x∈A∩B,则x∈A∪B”的逆命题;
④若?p是q的必要条件,则p是?q的充分条件;
⑤到两定点F1(-2,0),F2(2,0)距离之和为定值2的动点轨迹是椭圆.
A、①②⑤B、①③④
C、②③D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

定义一个集合A的所有子集组成的集合叫做集合A的幂集,记为P(A),用n(A)表示有限集A的元素个数,给出下列命题:
①对于任意集合A,都有A∈P(A);
②存在集合A,使得n[P(A)]=3;
③用∅表示空集,若A∩B=∅,则P(A)∩P(B)=∅;
④若A⊆B,则P(A)⊆P(B);
⑤若n(A)-n(B)=1,则n[P(A)]=2×n[P(B)].
其中正确的命题个数为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所不的程序框图,则输出的x的值是(  )
A、3B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某年级1000名学生的百米跑成绩全部介于13秒与18秒之间,为了了解学生的百米跑成绩情况,随机抽取了若干学生的百米跑成绩,并按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为1:4:10,且第二组的频数为8.
(Ⅰ)请估计该年级学生中百米跑成绩在[16,17)内的人数;
(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;
(Ⅲ)若从第一和第五组所有成绩中随机取出2个,求这2个成绩差的绝对值大于1秒的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,点E、F分别是AB、CD的中点,点G在EF上,沿EF将梯形AEFD翻折,使平面AEFD⊥平面EBCF,如图2.

(Ⅰ)当AG+GC最小时,求证:BD⊥CG;
(Ⅱ)当2VB-ADGE=VD-GBCF时,求二面角D-BG-C平面角的余弦值.

查看答案和解析>>

同步练习册答案