精英家教网 > 高中数学 > 题目详情

已知在等差数列中,.
(1)求通项公式;  
(2)求前项和的最大值.

(1),(2)

解析试题分析:(1)求等差数列通项,通常用待定系数法,即设的公差为及首项,列出两个独立条件:,解得,再代入通项公式即可:,(2)求等差数列前项和的最大值,一般用两个方法,一是函数思想,即利用等差数列前项和公式,将表示为关于的二次函数,利用二次函数定义区间与对称轴的位置关系求最值,此法注意去最值时自变量须是正整数这一限制条件,二是利用等差数列项的单调性,求出所有正项的和即为前项和的最大值.
试题解析:(1)设的公差为,由已知条件,得
解得, 2分
所以.()5分
,得,所以
(2).8分
所以时,取到最大值.10分
考点:等差数列前项和最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2013·天津模拟)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.
(1)求数列{an},{bn}的通项公式.
(2)求数列{an·bn}的前n项和Dn
(3)设cn=an·sin2-bn·cos2(n∈N*),求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知集合
具有性质:对任意的至少有一个属于.
(1)分别判断集合是否具有性质
(2)求证:①

(3)当时集合中的数列是否一定成等差数列?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公比不为的等比数列的首项,前项和为,且成等差数列.
(1)求等比数列的通项公式;
(2)对,在之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为.已知=an+1n2-n-()
(1) 求的值;
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有++…+<

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为2.
(1)求an及Sn
(2)证明:当n≥2时,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足().
(1)求的值;
(2)求(用含的式子表示);
(3)记,数列的前项和为,求(用含的式子表示).).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列是等差数列,且成等比数列。
(1).求数列的通项公式
(2).设,求前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为,且成等比数列,当时,
(1)求证:当时,成等差数列;
(2)求的前n项和

查看答案和解析>>

同步练习册答案