精英家教网 > 高中数学 > 题目详情

设数列的前项和为.已知=an+1n2-n-()
(1) 求的值;
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有++…+<

(1) 4
(2) n2
(3)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2012•广东)设数列{an}的前n项和为Sn,满足,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线,直线过抛物线的焦点,交轴于点.

(1)求证:
(2)过作抛物线的切线,切点为(异于原点),
(ⅰ)是否恒成等差数列,请说明理由;
(ⅱ)重心的轨迹是什么图形,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下列命题正确的是 (  )
①若数列是等差数列,且

②若是等差数列的前项的和,则成等差数列;
③若是等比数列的前项的和,则成等比数列;
④若是等比数列的前项的和,且;(其中是非零常数,),则为零.

A.①② B.②③ C.②④ D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.
求第2行和第3行的通项公式
证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于)的表达式;
(3)若,试求一个等比数列,使得,且对于任意的,均存在实数?,当时,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在等差数列中,.
(1)求通项公式;  
(2)求前项和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足为常数,
(1)当时,求
(2)当时,求的值;
(3)问:使恒成立的常数是否存在?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为零的等差数列,等比数列,满足
(1)求数列的通项公式;
(2)若,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足,求证:

查看答案和解析>>

同步练习册答案