【题目】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的离心率为
,若圆x2+y2=a2被直线x﹣y﹣
=0截得的弦长为2
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得
为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆M:
的左顶点为
、中心为
,若椭圆M过点
,且
.
(1)求椭圆M的方程;
(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;
(3)过点
作两条斜率分别为
的直线交椭圆M于
两点,且
,求证:直线
恒过一个定点.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
中,
为
中点,
为
上的一点,
.
(1)若
平面
,求证:
.
(2)平面
将棱柱
分割为两个几何体,记上面一个几何体的体积为
,下面一个几何体的体积为
,求
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率为
,其左、右焦点分别为
,左、右顶点分别为
,上、下顶点分别为
,四边形
与四边形
的面积之和为4.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,
(其中
为坐标原点),求直线
被以线段
为直径的圆截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=2n2+n,n∈N* .
(1)求{an}的通项公式;
(2)若数列{bn}满足an=4log2bn+3,n∈N* , 求数列{anbn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
,
分别为
的中点,点
在线段
上.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)如果直线
与平面
所成的角和直线
与平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢
(1)根据以上数据完成以下2×2列联表:
喜欢看足球比赛 | 不喜欢看足球比赛 | 总计 | |
男 | |||
女 | |||
总计 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)从女志愿者中抽取2人参加某场足球比赛服务工作,若其中喜欢看足球比赛的人数为ξ,求ξ的分布列和数学期望.
附:参考公式:K2=
,其中n=a+b+c+d
参考数据:
P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
(1)求该椭圆的离心率;(2)设
,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com