【题目】一个多面体的直观图及三视图如图所示,分别是的中点.
(I)求证:平面;
(II)求二面角的余弦值.
【答案】(I)证明见解析;(II).
【解析】
试题分析:(I)由直观图及三视图可知,该几何体为直三棱柱,底面为直角三角形,因此两两垂直,故以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,写出各点坐标,证明即可;(II)求平面的法向量,平面的法向量,然后计算出的值,通过观察图形确定二面角的余弦值与关系即可.
试题解析:(I)证明:由三视图可知,在这个多面体的直观图中,,且 ……………………………1分
因此两两垂直,故以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系, ……………………………2分
则由已知可得:,
故,
……………………………3分
即 4分
即,
而平面,平面,
平面.……………………………6分
(II)解:设是平面的一个法向量,则
,,,
,
令,可得,
,……………………………2分
由已知可得平面,
是平面的一个法向量,…………………………10分
设二面角的平面角为,则有:,
所求二面角的余弦值是.…………………………12分
科目:高中数学 来源: 题型:
【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一顿二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为,小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.
(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;
(2)若用表示小华抛得正面的个数,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, (为自然对数的底数).
(1)若函数的图象在处的切线方程为,求, 的值;
(2)若时,函数在内是增函数,求的取值范围;
(3)当时,设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, (为自然对数的底数).
(1)若函数的图象在处的切线方程为,求, 的值;
(2)若时,函数在内是增函数,求的取值范围;
(3)当时,设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N。
(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);
(2)证明:直线MN∥平面BDH;
(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一个食品商店为了调查气温对热饮销售的影响,经过调查得到关于卖出的热饮杯数与当天气温的数据如下表,绘出散点图如下.通过计算,可以得到对应的回归方程=-2.352x+147.767,根据以上信息,判断下列结论中正确的是( )
摄氏温度 | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
热饮杯数 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
A.气温与热饮的销售杯数之间成正相关
B.当天气温为2℃时,这天大约可以卖出143杯热饮
C.当天气温为10℃时,这天恰卖出124杯热饮
D.由于x=0时,的值与调查数据不符,故气温与卖出热饮杯数不存在线性相关性
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com