精英家教网 > 高中数学 > 题目详情
已知F是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆x2+y2=
1
4
b2相切于点Q,且
PQ
=
QF
,则椭圆C的离心率为
 
考点:椭圆的简单性质
专题:
分析:设原点为O,左焦点为F′,连接OQ,则|F′P|=2|OQ|,利用Q为切点,可得OQ⊥PF,利用勾股定理及a2-b2=c2,即可求得结论.
解答: 解:设原点为O,左焦点为F′,连接OQ  
∵O为F′F的中点,Q又为PF的中点,
∴|F′P|=2|OQ|,
∵Q为切点,
∴|OQ|=
1
2
b,|F′P|=b,OQ⊥PF
∴|PF|=2a-b,PF′⊥PF
∴4c2=b2+(2a-b)2
∴3b=2a
∵a2-b2=c2
a2-
4
9
a2=c2

∴e=
5
3

故答案为:
5
3
点评:本题考查椭圆的几何性质,考查直线与圆的位置关系,关键是找出几何量之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

假设关于某市的房屋面积x(平方米)与购房费用y(万元),有如下的统计数据:
x(平方米) 80 90 100 1l0
y(万元) 42 46 53 59
(1)用最小二乘法求出y关于x的线性回归方程
y
=bx+a.
(2)在已有的四组数据中任意抽取两组,求恰有一组实际值小于预测值的概率.(参考数据:
n
i=1
xi2
=36600,
n
i=1
xiyi
=19290,线性回归方程的系数公式为b=
n
i=1
xiyi-n
.
xy
n
i=1
xi-nx-2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x+1|+|2x-1|
(Ⅰ)求不等式f(x)≤12的解集M;
(Ⅱ)当a,b∈M时,证明:3|a+b|≤|9+ab|.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,垂足为D,则线段AE的长等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有18件,那么此样本的容量n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图(即算法流程图)如图所示,若使输出的结果不大于20,则输入的整数i的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x-4(x≤1)
x2-4x+3(x>1)
,g(x)=log2x,则函数f(x)=g(x)的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

3个猎人同时向一只兔子射击,他们射中的概率分别为0.6,0.5,0.4,问这只兔子被射中的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=4,以
a
b
为邻边的平行四边形的面积为4
3
,则
a
b
的夹角为
 

查看答案和解析>>

同步练习册答案