精英家教网 > 高中数学 > 题目详情
7.向量$\overrightarrow{m}$=(cosx,sinx),$\overrightarrow{b}$=(-cosx,$\sqrt{3}$cosx),x∈R,函数f(x)=$\overrightarrow{m}$•($\frac{1}{2}$$\overrightarrow{m}$-$\overrightarrow{n}$).
(1)求使不等式f(x)≥$\frac{1}{2}$成立的x的取值范围;
(2)记△ABC内角A,B,C的对边分别为a,b,c,若f($\frac{B}{2}$)=1,b=1,c=$\sqrt{3}$,求a的值.

分析 (1)利用向量的坐标表示,化简求得f(x)=cos(2x+$\frac{π}{3}$)+1,由余弦函数图象,即可求得f(x)≥$\frac{1}{2}$的解集;
(2)由f($\frac{B}{2}$)=1,代入f(x)的解析,求得B的值,根据余弦定理,即可求得a的值.

解答 解:(1)f(x)=$\overrightarrow{m}$•($\frac{1}{2}$$\overrightarrow{m}$-$\overrightarrow{n}$)=$\frac{1}{2}$.$\overrightarrow{m}$2-$\overrightarrow{m}$•$\overrightarrow{n}$,
=$\frac{1}{2}$(cos2x+sin2x)+cos2x-$\sqrt{3}$sinxcosx),
=$\frac{1}{2}$+$\frac{1}{2}$+$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x,
=cos(2x+$\frac{π}{3}$)+1,
f(x)≥$\frac{1}{2}$,即cos(2x+$\frac{π}{3}$)≥-$\frac{1}{2}$,
∴由余弦函数图象可知:2kπ-$\frac{2π}{3}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{2π}{3}$,k∈Z,
解得:x∈[kπ-$\frac{π}{2}$,kπ+$\frac{π}{6}$],k∈Z,
使不等式f(x)≥$\frac{1}{2}$成立的x的取值为:[kπ-$\frac{π}{2}$,kπ+$\frac{π}{6}$],k∈Z;
(2)f($\frac{B}{2}$)=1,即:cos(B+$\frac{π}{3}$)+1=1,
∴cos(B+$\frac{π}{3}$)=0,B是△ABC内角的内角,
∴B=$\frac{π}{6}$,
由余弦定理可知:b2=a2+c2-2accosB,
∴1=a2+3-2×1×$\sqrt{3}$×$\frac{\sqrt{3}}{2}$,
解得:a=1,
∴a=1.

点评 本题考查平面向量数量积的坐标运算,考查三角恒等变换的应用,突出考单调性,考查转化思想与运算求解能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、CD上,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=μ$\overrightarrow{DC}$.若λ+μ=$\frac{2}{3}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{10}{9}$D.$\frac{11}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=3sin(2x+$\frac{π}{3}$)的图象为C,关于函数f(x)及其图象的判断如下:
①图象C关于点($\frac{π}{3}$,0)对称;
②图象C关于直线x=$\frac{11π}{12}$对称;
③由图象C向右平移$\frac{π}{6}$个单位长度可以得到y=3sin2x的图象;
④函数f(x)在区间(-$\frac{π}{6}$,$\frac{5π}{6}$)内是减函数;
⑤函数|f(x)+1|的最小正周期为$\frac{π}{2}$.
其中正确的结论序号是①③.(把你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在平面四边形ABCD中,已知E,F,G,H分别是棱AB,BC,CD,DA的中点.若|EG|2-|HF|2=1,设|AD|=x,|BC|=y,|AB|=z,|CD|=1,则$\frac{2x+y}{{z}^{2}+8}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:
(1)cos($\frac{π}{6}$-α)-sin($\frac{π}{3}$-α);
(2)sin15°+tan60°cos15°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=cosωx(ω>0)在区间(-$\frac{π}{3}$,$\frac{π}{4}$)上有且只有两个极值点,则ω的取值范围是(  )
A.[2,3)B.(2,3]C.(3,4]D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在(a+b)n的展开式中,第2项与第6项的二项式系数相等,则n=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a2-3a+1=0,求(a3+a-3)(a3-a-3)÷[(a4+a-4+1)(a-a-1)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合M={x|-2≤x<2},N={0,-1,-2},则M∩N等于(  )
A.{0}B.{-1}C.{0,-1,-2}D.{0,-1}

查看答案和解析>>

同步练习册答案