精英家教网 > 高中数学 > 题目详情
17.已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、CD上,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=μ$\overrightarrow{DC}$.若λ+μ=$\frac{2}{3}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{10}{9}$D.$\frac{11}{9}$

分析 由题意画出图形,把$\overrightarrow{AE}$•$\overrightarrow{AF}$用$\overrightarrow{AB}、\overrightarrow{AD}$表示,最后转化为含有λ,μ的代数式,再结合λ+μ=$\frac{2}{3}$及基本不等式求得$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值.

解答 解:如图,
∵$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=μ$\overrightarrow{DC}$,且λ+μ=$\frac{2}{3}$,
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}+\overrightarrow{BE}$)•($\overrightarrow{AD}+\overrightarrow{DF}$),
=$(\overrightarrow{AB}+λ\overrightarrow{BC})•(\overrightarrow{AD}+μ\overrightarrow{DC})$=$(\overrightarrow{AB}+λ\overrightarrow{AD})•(\overrightarrow{AD}+μ\overrightarrow{AB})$
=$(1+λμ)\overrightarrow{AB}•\overrightarrow{AD}+λ|\overrightarrow{AD}{|}^{2}+μ|\overrightarrow{AB}{|}^{2}$
=$(1+λμ)×2×2×(-\frac{1}{2})+4(λ+μ)$=$-2(1+λμ)+\frac{8}{3}$.
由题意可得,λ,μ>0,
∵λ+μ=$\frac{2}{3}$,
∴λμ$≤(\frac{λ+μ}{2})^{2}$,则-2(1+λμ)≥$-\frac{20}{9}$,
∴$-2(1+λμ)+\frac{8}{3}≥\frac{4}{9}$(当且仅当$λ=μ=\frac{1}{3}$时等号成立),
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值为$\frac{4}{9}$.
故选:A.

点评 本题考查平面向量的数量积运算,考查了向量加法的三角形法则,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知圆(x+1)2+(y-4)2=5与圆x2+y2-2x-m2+2m+4=0外离,则m的范围是-2<m<-1或3<m<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{{2-5{i^{2015}}}}{{1+3{i^{2013}}}}$=(  )
A.$\frac{3}{10}+\frac{9}{10}$iB.$\frac{3}{10}-\frac{9}{10}i$C.$-\frac{3}{10}+\frac{9}{10}i$D.$\frac{17}{10}-\frac{1}{10}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知Sn是等比数列{an}(n∈N*)的前n项和,若S3=14,公比 q=2,则数列{an}的通项公式an=2n(N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1),则2$\overrightarrow{a}$+$\overrightarrow{b}$=(3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知z1=$\frac{16}{a+5}$-(10-a2)i,z2=$\frac{2}{1-a}$+(2a-5)i,a∈R,i为虚数单位.若z1+z2是实数.
(Ⅰ)求实数a的值;
(Ⅱ)求$\overline{z_1}$•z2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanα=-$\frac{1}{3}$,计算:
(1)$\frac{sinα+2cosα}{5cosα-sinα}$;
(2)$\frac{1}{{sin2α+{{cos}^2}α}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)若复数z=(m-1)+(m+1)i(m∈R),
①若z在复平面内对应的点z在第二象限内,求m的取值范围.
②若z为纯虚数时,求$\frac{1-z}{1+z}$.
(Ⅱ)已知复数Z=$\frac{(1-4i)(1+i)+2+4i}{3+4i}$,Z2+aZ+b=1+i,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.向量$\overrightarrow{m}$=(cosx,sinx),$\overrightarrow{b}$=(-cosx,$\sqrt{3}$cosx),x∈R,函数f(x)=$\overrightarrow{m}$•($\frac{1}{2}$$\overrightarrow{m}$-$\overrightarrow{n}$).
(1)求使不等式f(x)≥$\frac{1}{2}$成立的x的取值范围;
(2)记△ABC内角A,B,C的对边分别为a,b,c,若f($\frac{B}{2}$)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

同步练习册答案