精英家教网 > 高中数学 > 题目详情
抛物线的焦点为F在抛物线上,且存在实数λ,使0,
(1)求直线AB的方程;
(2)求△AOB的外接圆的方程.
(1)(2)
(1)抛物线的准线方程为
,∴ABF三点共线.由抛物线的定义,得||=.设直线AB,而
.、
||==

从而,故直线AB的方程为,即
(2)由 求得A(4,4),B,-1).
设△AOB的外接圆方程为,则
解得 
故△AOB的外接圆的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,设点(1,0),直线:,点在直线上移动,是线段轴的交点, .
(Ⅰ)求动点的轨迹的方程;
(Ⅱ) 记的轨迹的方程为,过点作两条互相垂直的曲线的弦,设 的中点分别为.求证:直线必过定点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 设抛物线的准线与轴交点为,过点 作直线交抛物线与不同的点两点.
(1)求线段中点的轨迹方程;
(2)若线段的垂直平分线交抛物线对称轴与,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线AB过抛物线x2=2pyp>0)的焦点F,并与其相交于AB两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.
(Ⅰ)求的取值范围;
(Ⅱ)过AB两点分别作此抛物线的切线,两切线相交于N点.
求证:
(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别为轴、轴上的点,且,动点满足:.
(1)求动点的轨迹的方程;
(2)过定点任意作一条直线与曲线交与不同的两点,问在轴上是否存在一定点,使得直线的倾斜角互补?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的准线方程为2x+3y-1=0,焦点为(-2,1),则抛物线的对称轴方程为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y=x2(a≠0)的焦点坐标是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的顶点在坐标原点,焦点是椭圆的一个焦点,则此抛物线的焦点到准线的距离是     .

查看答案和解析>>

同步练习册答案