精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足对任意的n∈N*,都有a13+a23+…+an3=(a1+a2+…+an2且an>0.
(1)求a1,a2的值;
(2)求数列{an}的通项公式;
(3)若bn=$\frac{8{a}_{n+3}}{{{a}_{n+2}}^{2}{{a}_{n+4}}^{2}}$,记Sn=$\underset{\stackrel{n}{∑}}{i=1}{b}_{i}$,如果Sn<$\frac{m}{9}$对任意的n∈N*恒成立,求正整数m的最小值.

分析 (1)由题设条件知a1=1.当n=2时,有a13+a23=(a1+a22,由此可知a2=2.
(2)由题意知,an+13=(a1+a2++an+an+12-(a1+a2++an2,由于an>0,所以an+12=2(a1+a2++an)+an+1.同样有an2=2(a1+a2++an-1)+an(n≥2),由此得an+12-an2=an+1+an.所以an+1-an=1.所以数列{an}是首项为1,公差为1的等差数列,由通项公式即可得到所求.
(3)求得bn=$\frac{8{a}_{n+3}}{{{a}_{n+2}}^{2}{{a}_{n+4}}^{2}}$=$\frac{8(n+3)}{(n+2)^{2}(n+4)^{2}}$=2[$\frac{1}{(n+2)^{2}}$-$\frac{1}{(n+4)^{2}}$],运用数列的求和方法:裂项相消求和,可得Sn,结合不等式的性质,恒成立思想可得m≥$\frac{25}{8}$,进而得到所求最小值.

解答 解:(1)当n=1时,有a13=a12
由于an>0,所以a1=1.
当n=2时,有a13+a23=(a1+a22
将a1=1代入上式,可得a22-a2-2=0,
由于an>0,所以a2=2.
(2)由于a13+a23+…+an3=(a1+a2+…+an2,①
则有a13+a23+…+an3+an+13=(a1+a2+…+an+an+12.②
②-①,得an+13=(a1+a2+…+an+an+12-(a1+a2+…+an2
由于an>0,所以an+12=2(a1+a2+…+an)+an+1.③
同样有an2=2(a1+a2+…+an-1)+an(n≥2),④
③-④,得an+12-an2=an+1+an
所以an+1-an=1.
由于a2-a1=1,即当n≥1时都有an+1-an=1,
所以数列{an}是首项为1,公差为1的等差数列.
故an=n.
(3)bn=$\frac{8{a}_{n+3}}{{{a}_{n+2}}^{2}{{a}_{n+4}}^{2}}$=$\frac{8(n+3)}{(n+2)^{2}(n+4)^{2}}$=2[$\frac{1}{(n+2)^{2}}$-$\frac{1}{(n+4)^{2}}$],
则Sn=2[$\frac{1}{9}$-$\frac{1}{25}$+$\frac{1}{16}$-$\frac{1}{36}$+$\frac{1}{25}$-$\frac{1}{49}$+$\frac{1}{36}$-$\frac{1}{64}$+…+$\frac{1}{(n+1)^{2}}$-$\frac{1}{(n+3)^{2}}$+$\frac{1}{(n+2)^{2}}$-$\frac{1}{(n+4)^{2}}$]
=2[$\frac{1}{9}$+$\frac{1}{16}$-$\frac{1}{(n+3)^{2}}$-$\frac{1}{(n+4)^{2}}$]<2×$\frac{25}{144}$=$\frac{25}{72}$,
Sn<$\frac{m}{9}$对任意的n∈N*恒成立,可得$\frac{m}{9}$≥$\frac{25}{72}$,
即有m≥$\frac{25}{8}$,
可得正整数m的最小值为4.

点评 本题主要考查数列通项、求和与不等式等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x+$\frac{t}{x}$(x>0)过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N,设g(t)=|MN|,若对任意的正整数n,在区间[2,n+$\frac{64}{n}$]内,若存在m+1个数a1,a2,…am+1,使得不等式g(a1)+g(a2)+…g(am)<g(am+1),则m的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{2-x}$+lg(x-1)的定义域是(  )
A.(1,+∞)B.(-∞,2)C.(2,+∞)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=log2$\frac{1}{3}$,b=log32,c=1.10.02,则a,b,c的大小关系是(  )
A.b<a<cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,一个三棱锥的三视图均为直角三角形.若该三棱锥的顶点都在同一个球面上,则该球的表面积为(  )
A.B.16πC.24πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至11月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x元和销售量y件之间的一组数据如表所示:
月份7891011
销售单价x元99.51010.511
销售量y件1110865
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}是首项为1的正项数列,且a${\;}_{n+1}^{2}$+3an+1-2a${\;}_{n}^{2}$+3an-anan+1=0,求数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列命题:
(1)已知等比数列的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比数列
(2)在△ABC中,若sinA=cosB,则△ABC的形状为直角三角形
(3)数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半
(4)已知f(x)=2x2+5x+3,g(x)=x2+4x+2,则f(x)>g(x)
(5)已知0<x<$\frac{1}{3}$,则函数y=x(1-3x)的最大值是$\frac{1}{12}$.
则上述命题正确的有几个(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知不等式ax2-3x+2>0的解集为{x|x<1或x>b}(a,b,c∈R)
(1)求a,b的值;
(2)解关于x不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

同步练习册答案