科目:高中数学 来源: 题型:
给定椭圆
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴随圆”. 若椭圆C的一个焦点为
,其短轴上的一个端点到
距离为
.
(Ⅰ)求椭圆
及其“伴随圆”的方程;
(Ⅱ)若过点
的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为
,求
的值;
(Ⅲ)过椭圆C“伴随圆”上一动点Q作直线
,使得
与椭圆C都只有一个公共点,试判断直线
的斜率之积是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
若函数
同时满足下列条件,(1)在D内为单调函数;(2)存在实数
,
.当
时,
,则称此函数为D内的等射函数,设![]()
则:
(1)
在(-∞,+∞)的单调性为 (填增函数或减函数);(2)当
为R内的等射函数时,
的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
如下图(1)、(2)、(3)、(4)四个图案,每个图案都是由小正方形拼成,现按同样的规律 (小正方形的摆放规律相同)进行拼图,设第n个图形包含f(n)个小正方形.
![]()
(1)f(6)= ;
(2) f(n)= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com