精英家教网 > 高中数学 > 题目详情
若P是椭圆
x2
4
+
y2
3
=1上的点,F1和F2是焦点,则k=|PF1|•|PF2|的最大值和最小值分别是______和______.
由题意,设|PF1|=x,
∵|PF1|+|PF2|=2a=4,∴|PF2|=4-x
∴|PF1|•|PF2|=x(4-x)=-x2+4x=-(x-2)2+4
∵a=2,b=
3
,∴c=
a2-b2
=1
∴1≤x≤3
∴x=1或3时,k=-x2+4x取最小值3;x=2时,k=-x2+4x取最大值为4
故答案为:4,3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

△ABC中,BC=7,AC=3,∠A=120°,求以点B、C为焦点且过点A的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的标准方程
x2
8
+
y2
9
=1,则椭圆的焦点坐标为______,离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,tan
C
2
=
1
2
AH
BC
=0
AB
•(
CA
+
CB
)=0
,则过点C,以A、H为两焦点的椭圆的离心率为(  )
A.
1
2
B.
1
3
C.
2
2
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知过椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点A(-a,0)作直线1交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且
PQ
=2
QA
,则椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
16
+
y2
8
=1
的焦点分别为F1、F2,以原点为圆心且过焦点的圆O与椭圆相交于点P,则△F1PF2的面积等于(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
4
+
y2
3
=1
,能否在y轴左侧的椭圆上找到一点M,使点M到左准线l的距离|MN|为点M到两焦点的距离的等差中项?若M存在,求出它的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点分别为F1、F2,以F1、F2为边作等边三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为(  )
A.4(2-
3
)
B.
3
-1
C.
1
2
(
3
+1)
D.
1
4
(
3
+2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
m2
+
y2
3-m
=1
的一个焦点为(0,1),则m的值为(  )
A.1B.
-1±
17
2
C.-2或1D.以上均不对

查看答案和解析>>

同步练习册答案