精英家教网 > 高中数学 > 题目详情
已知椭圆的标准方程
x2
8
+
y2
9
=1,则椭圆的焦点坐标为______,离心率为______.
因为椭圆的标准方程
x2
8
+
y2
9
=1,所以a=3,b2=8,所以c=1,
椭圆的焦点坐标在y轴上,坐标为(0,1),(0,-1).
椭圆的离心率为:
c
a
=
1
3

故答案为:(0,1),(0,-1);
1
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点P(2,1)
,离心率e=
3
2
,则椭圆的方程是(  )
A.
x2
6
+
y2
3
=1
B.
x2
4
+y2=1
C.
x2
8
+
y2
2
=1
D.
x2
16
+
y2
8
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a=6,b=5,焦点在y轴上的椭圆的标准方程是(  )
A.
x2
36
+
y2
35
=1
B.
x2
36
+
y2
25
=1
C.
x2
35
+
y2
36
=1
D.
x2
25
+
y2
36
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1F2为椭圆
x2
25
+
y2
16
=1的左右焦点,过F1的直线交椭圆于A,B两点
,则△ABF2的周长为(  )
A.28B.26C.22D.20

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上异于长轴端点A、B的任意点,若直线PA、PB的斜率乘积kPA•kPB=-
2
3
,则该椭圆的离心率为(  )
A.
3
3
B.
6
6
C.
1
2
D.
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为A,△OAF的面积为
3
2
a2
(O为原点),则此双曲线的离心率是(  )
A.
2
B.2C.
4
3
D.
2
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A(x1y1),B(4,
9
5
),C(x2y2)
是右焦点为F的椭圆
x2
25
+
y2
9
=1
上三个不同的点,则“|AF|,|BF|,|CF|成等差数列”是“x1+x2=8”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若P是椭圆
x2
4
+
y2
3
=1上的点,F1和F2是焦点,则k=|PF1|•|PF2|的最大值和最小值分别是______和______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点(4,2)是直线l被椭圆
x2
36
+
y2
9
=1
所截得的线段的中点,则直线l的斜率是______.

查看答案和解析>>

同步练习册答案