精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1、F2,P是椭圆上一点,l为左准线,PQ⊥l,垂足为Q,若四边形PQF1F2为平行四边形,则椭圆的离心率取值范围是(  )
分析:椭圆上动点P横坐标满足:-a≤x≤a,结合PQF1F2是平行四边形,得|PQ|=|F1F2|=2c=x+
a2
c
,所以x=2c-
a2
c
,由此建立关于ac的不等式,解之再结合椭圆离心率的取值范围,可求得该椭圆的离心率取值范围.
解答:解:根据题意,得
∵点P是椭圆上的动点
∴P点横坐标x满足:-a≤x≤a(等号不能成立)
∵四边形PQF1F2为平行四边形,
∴|PQ|=|F1F2|=2c
∵左准线方程为x=-
a2
c
,|PQ|=x+
a2
c
=2c,∴x=2c-
a2
c

因此可得-a<2c-
a2
c
<a,各项都除以a,得-1<2e-
1
e
<1
解不等式,得
1
2
<e<1
故选C
点评:本题给出椭圆上存在动点到左准线的距离等于焦距,求椭圆离心率取值范围,着重考查了椭圆的标准方程和基本概念,椭圆的简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案