精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.
(1)由已知得
c
a
=
2
2
a2
c
=2

解得a=
2
,c=1

b=
a2-c2
=1
∴所求椭圆的方程为
x2
2
+y2=1

( 2)由(1)得F1(-1,0)、F2(1,0)
①若直线l的斜率不存在,则直线l的方程为x=-1,
x=-1
x2
2
+y2=1
y=±
2
2

M(-1,
2
2
)
N(-1,-
2
2
)

|
F2M
+
F2N
|=|(-2,
2
2
)+(-2,-
2
2
)|=|(-4,0)|=4
,这与已知相矛盾.
②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1),
设M(x1,y1)、N(x2,y2),
联立
y=k(x+1)
x2
2
+y2=1
,消元得(1+2k2)x2+4k2x+2k2-2=0
x1+x2=
-4k2
1+2k2
x1x2=
2k2-2
1+2k2

y1+y2=k(x1+x2+2)=
2k
1+2k2

又∵
F2M
=(x1-1,y1),
F2N
=(x2-1,y2)

F2M
+
F2N
=(x1+x2-2,y1+y2)

|
F2M
+
F2N
|=
(x1+x2-2)2+(y1+y2)2
=
(
8k2+2
1+2k2
)
2
+(
2k
1+2k2
)
2
=
2
26
3

化简得40k4-23k2-17=0
解得k2=1或k2=-
17
40
(舍去)
∴k=±1
∴所求直线l的方程为y=x+1或y=-x-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案