精英家教网 > 高中数学 > 题目详情
(2012•四川)已知数列{an}的前n项和为Sn,且a2an=S2+Sn对一切正整数n都成立.
(Ⅰ)求a1,a2的值;
(Ⅱ)设a1>0,数列{lg
10a1an
}
的前n项和为Tn,当n为何值时,Tn最大?并求出Tn的最大值.
分析:(I)由题意,n=2时,由已知可得,a2(a2-a1)=a2,分类讨论:由a2=0,及a2≠0,分别可求a1,a2
(II)由a1>0,令bn=lg
10a1
an
,可知bn=1-lg(
2
)
n-1
=1-
1
2
(n-1)lg2
=
1
2
lg
100
2n-1
,结合数列的单调性可求和的最大项
解答:解:(I)当n=1时,a2a1=s2+s1=2a1+a2
当n=2时,得a22=2a1+2a2
②-①得,a2(a2-a1)=a2
若a2=0,则由(I)知a1=0,
若a2≠0,则a2-a1=1④
①④联立可得a1=
2
+1,a2=
2
+2
a1=1-
2
a2=2-
2

综上可得,a1=0,a2=0或a1=
2
+1,a2=
2
+2
a1=1-
2
a2=2-
2

(II)当a1>0,由(I)可得a1=
2
+1,a2=
2
+2

当n≥2时,(2+
2
)an=s2+sn
(2+
2
)an-1=s2+sn-1

(1+
2
)an=(2+
2
)an-1

an=
2
an-1
(n≥2)
an=a1(
2
)
n-1
=(1+
2
)•(
2
)
n-1

bn=lg
10a1
an

由(I)可知bn=1-lg(
2
)
n-1
=1-
1
2
(n-1)lg2
=
1
2
lg
100
2n-1

∴{bn}是单调递减的等差数列,公差为-
1
2
lg2
∴b1>b2>…>b7=lg
10
8
> 0

当n≥8时,bnb8=
1
2
lg
100
128
1
2
lg1=0

∴数列{lg
1
an
}
的前7项和最大,T7=
7(b1+b7)
2
=
7(1+1-3lg2)
2
=7-
21
2
lg2
点评:本题主要考查了利用数列的递推公式求解数列的通项公式及利用数列的单调性求解数列的和的最大项,还考查了一定的逻辑运算与推理的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)已知函数f(x)=cos2
x
2
-sin
x
2
cos
x
2
-
1
2

(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若f(α)=
3
2
10
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)已知a为正实数,n为自然数,抛物线y=-x2+
an
2
与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求对所有n都有
f(n)-1
f(n)+1
n
n+1
成立的a的最小值;
(Ⅲ)当0<a<1时,比较
1
f(1)-f(2)
+
1
f(2)-f(4)
+…+
1
f(n)-f(2n)
6•
f(1)-f(n+1)
f(0)-f(1)
的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)已知a为正实数,n为自然数,抛物线y=-x2+
an
2
与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求对所有n都有
f(n)-1
f(n)+1
n3
n3+1
成立的a的最小值;
(Ⅲ)当0<a<1时,比较
n
k=1
1
f(k)-f(2k)
27
4
f(1)-f(n)
f(0)-f(1)
的大小,并说明理由.

查看答案和解析>>

同步练习册答案