20£®ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÔ²CµÄÔ²ÐÄC£¨$\sqrt{2}£¬\frac{¦Ð}{4}$£©£¬°ë¾¶r=1£®
£¨1£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©Èô¦Á¡Ê[0£¬$\frac{¦Ð}{3}$]£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦Á}\\{y=2+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬µãPµÄÖ±½Ç×ø±êΪ£¨2£¬2£©£¬Ö±Ïßl½»Ô²CÓÚA£¬BÁ½µã£¬Çó$\frac{{|{PA}|•|{PB}|}}{{|{PA}|+|{PB}|}}$µÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÔ²CµÄÔ²ÐÄC£¨$\sqrt{2}£¬\frac{¦Ð}{4}$£©»¯ÎªC£¨1£¬1£©£¬°ë¾¶r=1£¬¿ÉµÃ·½³Ì£º£¨x-1£©2+£¨y-1£©2=1£¬ÔÙÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿É»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦Á}\\{y=2+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2+£¨2cos¦Á+2sin¦Á£©t+1=0£¬ÀûÓÃ$\frac{{|{PA}|•|{PB}|}}{{|{PA}|+|{PB}|}}$=$\frac{{t}_{1}{t}_{2}}{-£¨{t}_{1}+{t}_{2}£©}$=$\frac{1}{2\sqrt{2}sin£¨¦Á+\frac{¦Ð}{4}£©}$£¬¼°ÆäÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÔ²CµÄÔ²ÐÄC£¨$\sqrt{2}£¬\frac{¦Ð}{4}$£©»¯ÎªC£¨1£¬1£©£¬°ë¾¶r=1£¬¿ÉµÃ·½³Ì£º£¨x-1£©2+£¨y-1£©2=1£¬»¯Îªx2+y2-2x-2y+1=0£®
¡à¦Ñ2-2¦Ñcos¦È-2¦Ñsin¦È+1=0£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦Á}\\{y=2+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2+£¨2cos¦Á+2sin¦Á£©t+1=0£¬
¡àt1+t2=-£¨2cos¦Á+2sin¦Á£©£¬t1t2=1£®
¡ßµãPµÄÖ±½Ç×ø±êΪ£¨2£¬2£©ÔÚÔ²µÄÍⲿ£®
¡à$\frac{{|{PA}|•|{PB}|}}{{|{PA}|+|{PB}|}}$=$\frac{{t}_{1}{t}_{2}}{-£¨{t}_{1}+{t}_{2}£©}$=$\frac{1}{2cos¦Á+2sin¦Á}$=$\frac{1}{2\sqrt{2}sin£¨¦Á+\frac{¦Ð}{4}£©}$£¬
¡ß¦Á¡Ê[0£¬$\frac{¦Ð}{3}$]£¬¡à$sin£¨¦Á+\frac{¦Ð}{4}£©$¡Ê$[\frac{\sqrt{2}}{2}£¬1]$£®
¡àµ±¦Á=0ʱ£¬$\frac{{|{PA}|•|{PB}|}}{{|{PA}|+|{PB}|}}$µÄ×îСֵΪ$\frac{1}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˰ÑÔ²µÄ¼«×ø±ê»¯ÎªÖ±½Ç×ø±ê¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óá¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁ˼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªP£¨x£¬y£©ÊǺ¯Êýf£¨x£©µÄͼÏóÉϵÄÒ»µã£¬$\overrightarrow{a}$=£¨1£¬£¨x-2£©5£©£¬$\overrightarrow{b}$=£¨1£¬y-2x£©£¬$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬ÊýÁÐ{an}Êǹ«²î²»ÎªÁãµÄµÈ²îÊýÁУ¬ÇÒf£¨a1£©+f£¨a2£©+¡­+f£¨a9£©=36£¬Ôòa1+a2+¡­+a9=18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ $\left\{\begin{array}{l}{x=acos¦Õ}\\{y=bsin¦Õ}\end{array}\right.$£¨a£¾b£¾0£¬¦ÕΪ²ÎÊý£©£¬ÔÚÒÔ¦¯Îª¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ×ø±êϵÖУ¬ÇúÏßC2ÊÇÔ²ÐÄÔÚ¼«ÖáÉÏÇÒ¾­¹ý¼«µãµÄÔ²£¬ÒÑÖªÇúÏßC1ÉϵĵãM£¨$\sqrt{3}$£¬$\frac{1}{2}$£©¶ÔÓ¦µÄ²ÎÊý¦Õ=$\frac{¦Ð}{6}$£¬ÉäÏߦÈ=$\frac{¦Ð}{3}$ÓëÇúÏßC2½»ÓÚµãD£¨1£¬$\frac{¦Ð}{3}$£©£®
£¨1£©ÇóÇúÏßC1£¬C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãA£¨¦Ñ1£¬¦È£©£¬¦¢£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©¶¼ÔÚÇúÏßC1ÉÏ£¬Çó$\frac{1}{{¦Ñ}_{1}^{2}+{¦Ñ}_{2}^{2}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑ֪˫ÇúÏßx2-y2=4µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãPn£¨xn£¬yn£©£¨n=1£¬2£¬3¡­£©ÔÚÆä×óÖ§ÉÏ£¬ÇÒÂú×ã|Pn+1F1|=|PnF2|£¬P1F1¡ÍF1F2£¬Ôòx2015=-4030$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬µãDÊÇABµÄÖе㣬BC=CC1=4£¬AB=10£¬CD=3£®
£¨¢ñ£©ÇóÖ¤£ºAC1¡ÎÃæCDB1£»
£¨¢ò£©ÇóÖ¤£ºC1B¡ÍÃæCDB1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®A£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÅ×ÎïÏßy2=2xÉÏÏàÒìµÄÁ½µã£¬ÇÒÔÚxÖáͬ²à£¬µãC£¨1£¬0£©£®ÈôÖ±ÏßAC£¬BCµÄбÂÊ»¥ÎªÏà·´Êý£¬Ôòy1y2=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ex-ax+a£¬ÆäÖÐa¡ÊR£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢Ð´³ö¶ÔÓ¦µÄµ¥µ÷Çø¼ä£»
£¨2£©Éèb¡ÊR£¬Èôº¯Êýf£¨x£©¡Ýb¶ÔÈÎÒâx¡ÊR¶¼³ÉÁ¢£¬ÇóabµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÇóÖ±Ïßl1£ºy-2=0£¬l2£º3x+2y-12=0µÄ½»µã£¬²¢»­Í¼£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªPΪ$\frac{{x}^{2}}{4}$-y2=1ÉϵÄÒ»µã£¬F1¡¢F2Ϊ½¹µã£¬ÇÒ¡ÏF1PF2=60¡ã£¬ÇóS${\;}_{¡÷{F}_{1}P{F}_{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸