精英家教网 > 高中数学 > 题目详情
9.求直线l1:y-2=0,l2:3x+2y-12=0的交点,并画图.

分析 直接联立两直线求解方程组得答案.

解答 解:联立$\left\{\begin{array}{l}{y-2=0}\\{3x+2y-12=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{8}{3}}\\{y=2}\end{array}\right.$,
∴直线l1:y-2=0,l2:3x+2y-12=0的交点为($\frac{8}{3},2$),
如图:

点评 本题考查了两条直线的交点坐标,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{{{e^{ax}}}}{{{x^2}+1}}$,a∈R.
(Ⅰ)当a=$\frac{3}{5}$时,求函数f(x)的单调区间;
(Ⅱ)设g(x)为f(x)的导函数,当x∈[$\frac{1}{e}$,2e]时,函数f(x)的图象总在g(x)的图象的上方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,已知圆C的圆心C($\sqrt{2},\frac{π}{4}$),半径r=1.
(1)求圆C的极坐标方程;
(2)若α∈[0,$\frac{π}{3}$],直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),点P的直角坐标为(2,2),直线l交圆C于A,B两点,求$\frac{{|{PA}|•|{PB}|}}{{|{PA}|+|{PB}|}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F1、F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于点P,且∠F1PF2=45°,求此双曲线的渐近线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,已知点M,N是单位圆的半圆弧$\widehat{AB}$上异于端点的不同的任意两点,且直线MN与x轴相交于点R,若$\overrightarrow{OA}=x\overrightarrow{OM}+y\overrightarrow{ON}$(x,y∈R,O为坐标原点),则实数x+y的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个口袋里有5个不同的小球,另一个口袋中有4个不同小球,若从两个口袋中任意取2个球,共多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{2}$,则x+y的最小值为(  )
A.61B.16C.81D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义域为R的函数f(x)满足:f(3)=-6,且对任意x∈R总有f′(x)<3,则不等式f(x)<3x-15的解集为(  )
A.(-∞,4)B.(-∞,3)C.(3,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若锐角A,B满足:cosA=$\frac{4cos(A+B)}{5}$=$\frac{3}{5}$,求sinB.

查看答案和解析>>

同步练习册答案