精英家教网 > 高中数学 > 题目详情
19.若锐角A,B满足:cosA=$\frac{4cos(A+B)}{5}$=$\frac{3}{5}$,求sinB.

分析 先利用同角三角函数基本关系分别求得sinA和sin(A+B)的值,进而利用sinB=sin(A+B-A)通过两角和公式展开后求得答案.

解答 解:∵A,B均为锐角,
∴0<A+B<π,$cos(A+B)=\frac{3}{4}$,
∴sinA=$\sqrt{1-{cos}^{2}A}$=$\frac{4}{5}$,sin(A+B)=$\sqrt{1-{cos}^{2}(A+B)}$=$\frac{\sqrt{7}}{4}$,
∴sinB=sin(A+B-A)=sin(A+B)cosA-cos(A+B)sinA=$\frac{\sqrt{7}}{4}×\frac{3}{5}-\frac{3}{4}×\frac{4}{5}$=$\frac{3\sqrt{7}-12}{20}$.

点评 本题主要考查了两角和与差的正弦函数的应用.解题的关键是借助sinB=sin(A+B-A),利用两角和公式来解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求直线l1:y-2=0,l2:3x+2y-12=0的交点,并画图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知P为$\frac{{x}^{2}}{4}$-y2=1上的一点,F1、F2为焦点,且∠F1PF2=60°,求S${\;}_{△{F}_{1}P{F}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P是A1D上一定点且DP=2PA1,Q是AB1上一动点.
(1)当$\frac{AQ}{Q{B}_{1}}$等于多少时,PQ长取得最小值?并求此最小值;
(2)在条件(1)下,求证:
①PQ∥D1B;
②PQ是异面直线A1D、AB1的公垂线段.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.李师傅用10万块钱投资理财,理财方案为:将10万块钱里的一部分用来买股票,据分析预测:投资股市一年可能获利40%,也可能亏损20%.(只有这两种可能),且获利的概率为$\frac{1}{2}$;剩下的钱用来买基金,据分析预测:投资基金一年后可能获利20%,可能损失10%,也可能不赔不赚,且这三种情况发生的概率分别为$\frac{3}{5}$,$\frac{1}{5}$,$\frac{1}{5}$,若想获利最大,请问李师傅该怎么投资?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知α,β都是锐角,cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$.
(1)求sinα和tanα的值;
(2)求sin(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°,E和F分别是侧棱CD和PC的中点.
(1)求证:平面BEF⊥平面PCD;
(2)求三棱锥F-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1中棱长为a,E、F分别为棱BB1和DD1的中点,求四棱锥D1-AEC1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x、y满足约束条件$\left\{\begin{array}{l}{xy≥0}\\{{x}^{2}+{y}^{2}≤4}\\{x+y-1≤0}\end{array}\right.$,则z=2x+y的取值范围是(  )
A.[-2$\sqrt{5}$,2$\sqrt{5}$]B.[0,2]C.[-2$\sqrt{5}$,2]D.[$\frac{2\sqrt{5}}{5}$,1]

查看答案和解析>>

同步练习册答案