精英家教网 > 高中数学 > 题目详情
19.函数y=loga(x2-2x)(0<a<1)的单调递增区间是 (  )
A.(1,+∞)B.(2,+∞)C.(-∞,1)D.(-∞,0)

分析 根据复合函数单调性之间的关系即可得到结论,注意定义域的性质.

解答 解:∵函数y=loga(x2-2x)(0<a<1),
∴x2-2x>0,
x>2或x<0,
∴t=x2-2x)在(--∞,0)单调递减,在(2,+∞)单调递增.
∵(0<a<1)
∴根据复合函数的单调性规律得出:函数y=loga(x2-2x)(0<a<1)的单调递增区间是(-∞,0)
故选:D.

点评 本题主要考查函数单调区间的求解,根据复合函数单调性之间的关系是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数y=f(x)的图象与函数y=2-x-1的图象关于y轴对称,则f(4)=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-|x|+2a-1,其中a≥0,a∈R.设f(x)在区间[1,2]上的最小值为g(a),求g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(x2+x,-x),当m<1时 求不等式m($\overrightarrow{a}$•$\overrightarrow{b}$)2-(m+1)$\overrightarrow{a}$•$\overrightarrow{b}$+1<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.幂函数f(x)=xa的图象经过点(4,$\frac{1}{2}$),则实数a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x+2015)=x+$\frac{1}{x}$,则函数f(x)的解析式为(  )
A.f(x)=x-2015$+\frac{1}{x-2015}$B.f(x)=2015 $+\frac{1}{x-2015}$
C.f(x)=x$+\frac{1}{x}$D.f(x)=x+2015+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数g(x)=($\frac{1}{2}$)|x-1|的单调减区间是[1,+∞),值域是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,在下列条件下分别求h′(5)的值.
(1)h(x)=3f(x)-2g(x);
(2)h(x)=f(x)•g(x)+$\sqrt{x}$+1;
(3)h(x)=$\frac{f(x)+2}{g(x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{3^{x+1}},x≤0\\{log_2}x,x>0\end{array}$,若f(x0)≥1,则x0的取值范围为-1≤x0≤0或x0≥2.

查看答案和解析>>

同步练习册答案