【题目】如图半圆柱
的底面半径和高都是1,面
是它的轴截面(过上下底面圆心连线
的平面),
分别是上下底面半圆周上一点.
![]()
(1)证明:三棱锥
体积
,并指出
和
满足什么条件时有![]()
(2)求二面角
平面角的取值范围,并说明理由.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,底面
是边长为2的正方形,侧面
为正三角形,且面
面
,
分别为棱
的中点.
(1)求证:
平面
;
(2)(文科)求三棱锥
的体积;
(理科)求二面角
的正切值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,g(x)=x2+2mx+ ![]()
(1)用定义法证明f(x)在R上是增函数;
(2)求出所有满足不等式f(2a﹣a2)+f(3)>0的实数a构成的集合;
(3)对任意的实数x1∈[﹣1,1],都存在一个实数x2∈[﹣1,1],使得f(x1)=g(x2),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2
,AC=BC,F 是AB上一点,且AF=
AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=
. ![]()
(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A﹣CFD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
(
为参数),将
上的所有点的横坐标、纵坐标分别伸长为原来的
和
倍后得到曲线
.以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)试写出曲线
的极坐标方程与曲线
的参数方程;
(2)在曲线
上求一点
,使点
到直线
的距离最小,并求此最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形
四点坐标为A(0,-2),C(4,2),B(4,-2),D(0,2).
![]()
(1)求对角线
所在直线的方程;
(2)求矩形
外接圆的方程;
(3)若动点
为外接圆上一点,点
为定点,问线段PN中点的轨迹是什么,并求出该轨迹方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为2的正方体
中,M是棱CC1的中点.
(1)求B到面
的距离;
(2)求BC与面
所成角的正切值;
(3)求面
与面ABCD所成的锐二面角的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com