精英家教网 > 高中数学 > 题目详情

【题目】如图,抛物线的焦点为,过点的直线与抛物线交于点,直线分别与抛物线交于点.

1)求抛物线的标准方程;

2)求的面积之和的最小值.

【答案】1;(2.

【解析】

1)根据抛物线的性质,求得的值,求得抛物线方程;

2)设直线的方程,代入抛物线方程,同理求得的方程,并代入抛物线方程求得,因此求得直线方程,并且求得直线方程恒过定点,因此表示出的面积,即可求得的面积之和的最小值.

1)由题意可知,则,所以抛物线的标准方程

2)由题意可知,设直线的方程为,设

联立方程组,消去,整理得

设直线的方程,联立方程组

消去,整理得,则

,同理得到

则直线的方程为

则直线过定点

所以

所以,当且仅当时等号成立.

所以,的面积之和的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,的导函数.

(1)求证:上存在唯一零点;

(2)求证:有且仅有两个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把编号为12345的五个大小、形状相同的小球,随机放入编号为12345的五个盒子里.每个盒子里放入一个小球.

1)求恰有两个球的编号与盒子的编号相同的概率;

2)设恰有个小球的编号与盒子编号相同,求随机变量的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为抛物线上一点.

(1)求过点的切线方程(用表示);

(2)过直线上一点作抛物线的两条切线,切点为,求为抛物线的顶点)面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)当时,判断曲线与曲线的位置关系;

(2)当曲线上有且只有一点到曲线的距离等于时,求曲线上到曲线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的值;

(2)令上最小值为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形中, 分别为的中点,以为圆心, 为半径的圆交,点在弧上运动(如图).若,其中,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4名大学生随机安排到A,B,C,D四个公司实习.

(1)求4名大学生恰好在四个不同公司的概率;

(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?

(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

同步练习册答案