精英家教网 > 高中数学 > 题目详情
已知命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”.若命题“?p∧q”是真命题,则实数a的取值范围是
a>1
a>1
分析:先分别化简命题p:方程x2-3ax+2a2=0在[-1,1]上有解,等价于a∈[-1,1]或2a∈[-1,1],可得a∈[-1,1];命题q:只有一个实数x满足不等式 x2+2ax+2a≤0,故判别式 a2-2a=0,可得a=0或a=2,从而要使命题P或q是假命题,则p假且q假,故可得答案.
解答:解:若命题p:“?x∈[1,2],x2-a≥0”,为真命题,即:“?x∈[1,2],x2≥a”,需a≤1.
若命题?p为真命题,即a>1,①
若命题q真命题,△=4a2-4(2-a)≥0,解得a≤-2或a>1,②
所以命题“?p∧q”是真命题,①②同时成立,即a>1
故答案为:a>1
点评:本题以方程与不等式为载体,考查命题的真假,关键是命题的化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:?x∈R,使x2-x+a=0;命题Q:函数y=
ax-1
ax2+ax+1
的定义域为R.
(1)若命题P为真,求实数a的取值范围;
(2)若命题Q为真,求实数a的取值范围;
(3)如果P∧Q为假,P∨Q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x2+2x+
1
2
<0
;命题q:?x∈R,sinx-cosx=
2
.则下列判断正确的是(  )
A、p是真命题
B、q是假命题
C、¬P是假命题
D、¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x=2k+1(k∈Z),命题q:x=4k-1(k∈Z),则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+2ax+a≤0,则命题p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命题p为假命题,则实数a的取值范围是
(0,1)
(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使2x2+(k-1)x+
1
2
<0;命题q:方程
x2
9-k
-
y2
k-1
=1
表示双曲线.若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

同步练习册答案