精英家教网 > 高中数学 > 题目详情
3.若抛物线y2=2px的焦点与双曲线$\frac{x^2}{6}$-$\frac{y^2}{10}$=1的右焦点重合,则p的值为(  )
A.4B.-4C.8D.-8

分析 求出双曲线的a,b,c,可得焦点为(4,0),再由抛物线的焦点坐标,解方程可得p.

解答 解:双曲线$\frac{x^2}{6}$-$\frac{y^2}{10}$=1的a2=6,b2=10,c2=a2+b2=16,
则右焦点为(4,0),
抛物线y2=2px的焦点为($\frac{p}{2}$,0),
即有$\frac{p}{2}$=4,
解得p=8.
故选C.

点评 本题考查双曲线和抛物线的方程和性质,主要考查焦点的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线的顶点在原点,焦点F在x轴上,且抛物线上横坐标为1的点到F的距离为2,过点F的直线交抛物线于A,B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,求直线AB的斜率;
(Ⅲ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.当-1<x<1时,直线l:y=mx+1在x轴上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设P0是抛物线y=2x2上的一点,M1,M2是抛物线上的任意两点,k1,k2,k3分别是P0M1,M1M2,M2P0的斜率,若k1-k2+k3=4,则P0的坐标为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线x2=-8y的准线方程为y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若曲线x=$\frac{1}{4}$y2上的动点P到A(-1,2$\sqrt{3}$)的距离与到y轴的距离之和为d,则d的最小值是(  )
A.$\sqrt{13}$B.2$\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线x2=-$\frac{1}{4}$y的焦点坐标为(  )
A.(-$\frac{1}{8}$,0)B.(0,-$\frac{1}{8}$)C.(0,-$\frac{1}{16}$)D.(-$\frac{1}{16}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线的顶点在原点,准线平行于y轴,且经过点(3,-2$\sqrt{6}$).
(1)求抛物线的方程;
(2)求抛物线被直线2x-y-3=0所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从广州某高校男生中随机抽取100名学生,测得他们的身高(单位:cm)情况如表:
(1)求a,b,c的值;
(2)按表1的身高组别进行分层抽样,从这100名学生中抽取20名担任广州国际马拉松志愿者,再从身高不低于175cm的志愿者中随机选出2名担任迎宾工作,求这2名担任迎宾工作的志愿者中至少有1名的身高不低于180cm的概率.
分组频数频率
[160,165)50.05
[165,170)ac
[170,175)350.35
[175,180)b0.20
[180,185]100.10
合计1001.00

查看答案和解析>>

同步练习册答案