精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,的中点.

(1)求证:
(2)求二面角的平面角的正弦值.

(1)见解析;(2).

解析试题分析:(1)要证线面垂直,需证线与平面内的两条相交直线垂直,由底面,先证,得,再证,从而得;(2)以为原点建立空间直角坐标系,利用空间向量解决问题.
试题解析:(1)证明:底面,又,故,故                4分
的中点,故,从而,故
易知,故             6分
(2)如图建立空间直角坐标系,设,则

,从而,  9分
为平面的法向量,
可以取         11分
为平面的法向量,若二面角的平面角为
         11分
因此。        12分
考点:1.线面垂直的判定;2.二面角;3.空间向量在解决立体几何问题中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点.

(1)求证:EF∥平面PCD;
(2)求三棱锥F﹣PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,
 
(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体中,四边形为菱形,,面∥面,都垂直于面,且的中点,的中点.

(1)求几何体的体积;
(2)求证:为等腰直角三角形;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点的中点.

(1)求三棱锥的体积;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,底面为平行四边形,侧面底面.已知

(Ⅰ)证明
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,的中点,分别在线段上,且,把沿折起,如下图所示,

(1)求证:平面
(2)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1),等腰直角三角形的底边,点在线段上,,现将沿折起到的位置(如图(2)).

(Ⅰ)求证:
(Ⅱ)若,直线与平面所成的角为,求长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,上的高,沿折起,使.
(Ⅰ)证明:平面⊥平面
(Ⅱ)若,求三棱锥的表面积.

查看答案和解析>>

同步练习册答案