精英家教网 > 高中数学 > 题目详情

已知中,的中点,分别在线段上,且,把沿折起,如下图所示,

(1)求证:平面
(2)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由.

(1)证明平面,及,则平面,得到平面//平面平面.
(2)存在点,使得直线与平面所成的角为,且.

解析试题分析:(1)证明“线面平行”,一般思路是通过证明“线线平行”或“面面平行”.本题中,注意到平面与平面的平行关系易得,因此,通过证明“面面平行”,达到目的.
(2)存在性问题,往往通过“找,证”等,实现存在性的证明.本题从确定二面角的平面角入手,同时确定得到.
试题解析:(1),又的中点
,又  2分
在空间几何体中,
,则平面
,则平面
平面//平面  5分
平面  7分
(2)∵二面角为直二面角,平面平面
平面,  9分
在平面内的射影为
与平面所成角为  11分
由于
    14分
考点:平行关系,垂直关系,二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点D是AB的中点,

求证:(1); (2)平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN

(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,的中点.

(1)求证:
(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.

(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,异面直线所成
的角为.

(Ⅰ)求证:
(Ⅱ)设的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(Ⅰ)证明:平面
(Ⅱ)证明:∥平面
(Ⅲ)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案