已知中,,,为的中点,分别在线段上,且交于,把沿折起,如下图所示,
(1)求证:平面;
(2)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由.
(1)证明平面,及,则平面,得到平面//平面,平面.
(2)存在点,使得直线与平面所成的角为,且.
解析试题分析:(1)证明“线面平行”,一般思路是通过证明“线线平行”或“面面平行”.本题中,注意到平面与平面的平行关系易得,因此,通过证明“面面平行”,达到目的.
(2)存在性问题,往往通过“找,证”等,实现存在性的证明.本题从确定二面角的平面角入手,同时确定得到.
试题解析:(1),又为的中点
,又 2分
在空间几何体中,
,则平面
,则平面
平面//平面 5分
平面 7分
(2)∵二面角为直二面角,平面平面
,平面, 9分
在平面内的射影为,
与平面所成角为, 11分
由于,
14分
考点:平行关系,垂直关系,二面角.
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN
(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.
(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(Ⅰ)证明:平面;
(Ⅱ)证明:∥平面;
(Ⅲ)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com