【题目】已知长方形
中,
,
,现将长方形沿对角线折起,使
,得到一个四面体
,如图所示,
![]()
(1)试问:在折叠的过程中,异面直线
与
能否垂直?若能垂直,求出相应
的值;若不垂直请说明理由;
(2)当四面体
体积最大时,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,已知直线
的参数方程是
(m>0,t为参数),曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与
轴交于点
,与曲线
交于点
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将余弦函数的图象向右平移
个单位后,再保持图象上点的纵坐标不变,横坐标变为原来的一半,得到函数
的图象,下列关于
的叙述正确的是( )
A. 最大值为
,且关于
对称
B. 周期为
,关于直线
对称
C. 在
上单调递增,且为奇函数
D. 在
上单调递减,且为偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图的程序框图中,若输入
,
,则输出的
值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
为实数)有极值,且在
处的切线与直线
平行.
(1)求实数
的取值范围;
(2)是否存在实数
,使得函数
的极小值为1,若存在,求出实数
的值;若不存在,请说明理由;
(3)设函数
试证明:
在
上恒成立并证明![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com