精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列,数列{an}的通项公式an=2n-1.

分析 设等差数列{an}的首项为a1,由已知列式求得a1,代入等差数列的通项公式得答案.

解答 解:设等差数列{an}的首项为a1,且公差为2,
由S1,S2,S4成等比数列,得$(2{a}_{1}+2)^{2}={a}_{1}(4{a}_{1}+12)$,
解得:a1=1.
∴an=1+2(n-1)=2n-1.
故答案为:2n-1.

点评 本题考查等差数列的通项公式,考查了等比数列的性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在三棱柱ABC-A1B1C1中,AC⊥BC,AC1⊥平面ABC,BC=CA=AC1
(Ⅰ)求证:AC⊥平面AB1C1
(Ⅱ)求直线A1B与平面AB1C1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左、右顶点分别为A1、A2,点P是线段OA2的中垂线与双曲线E的渐近线的交点(O为双曲线中心),若PA1⊥PA2,则双曲线E的离心率e=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义域为R的偶函数,当x≤0时,f(x)=x2+2x,那么,不等式f(x+2)<3的解集是{x|-5<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知圆E:(x+$\sqrt{3}$)2+y2=16,点F($\sqrt{3}$,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹Γ的方程;
(2)已知A,B,C是轨迹Γ的三个动点,点A在一象限,B与A关于原点对称,且|CA|=|CB|,问△ABC的面积是否存在最小值?若存在,求出此最小值及相应直线AB的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,其中n∈N*,若程序运行后,输出S的结果是(  )
A.$\frac{n(3n-1)}{2}$B.$\frac{(3n+2)(n+1)}{2}$C.$\frac{(3n-2)(n+1)}{2}$D.$\frac{(3n+2)(n-1)}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{3}$sin2x+$\frac{3}{2}$sin2x.
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=$\sqrt{3}$,△ABC的面积为3$\sqrt{3}$,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的表面积为80π,则OA与平面ABCD所成的角的余弦值为(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{19}}}{19}$D.$\frac{{\sqrt{30}}}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{i-1}{i+1}$的共轭复数为(  )
A.iB.-iC.1-iD.-1+i

查看答案和解析>>

同步练习册答案