精英家教网 > 高中数学 > 题目详情
3.如果A为锐角,sin(π+A)=-$\frac{1}{2}$,那么cos(π-A)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由已知及诱导公式可求sinA,利用诱导公式及同角三角函数关系式即可求值.

解答 解:∵A为锐角,sin(π+A)=-$\frac{1}{2}$,
∴sinA=$\frac{1}{2}$,
∴cos(π-A)=-cosA=$-\sqrt{1-si{n}^{2}A}$=-$\frac{\sqrt{3}}{2}$.
故选:C.

点评 本题主要考查了诱导公式,同角三角函数关系式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.f(x)=sin2x+cos2x的周期为(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图△OAB,其中$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,M,N分别是边OA,OB上的点,且$\overrightarrow{OM}$=$\frac{1}{3}$$\overrightarrow{a}$,$\overrightarrow{ON}$=$\frac{1}{2}$$\overrightarrow{b}$,设$\overrightarrow{AN}$与$\overrightarrow{BM}$相交于P,用向量$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x,y满足约束条件$\left\{{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+3y≤2}\end{array}}\right.$,则目标函数z=$\frac{y+1}{x+1}$的最小值为(  )
A.2B.1C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC内角A、B、C的对边分别为a,b,c,已知c=acosB+bsinA.
(Ⅰ)求A
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某次期中考试中,甲、乙两组学生的数学成绩如下:则下列结论正确的是(  )
甲:88 100 95 86 95 91 84 74 92 83
乙:93   89 81 77 96 78 77 85 89 86.
A.$\overline{x}$>$\overline{x}$,s>sB.$\overline{x}$甲>$\overline{x}$,s<sC.$\overline{x}$甲<$\overline{x}$,s>sD.$\overline{x}$甲<$\overline{x}$,s<s

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若用C、R、I分别表示复数集、实数集、纯虚数集,则有(  )
A.C=R∪IB.R∩I={0}C..∁CR=C∩ID.R∩I=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解方程组:
$\left\{\begin{array}{l}{\frac{10}{x+y}+\frac{3}{x-y}=-5}\\{\frac{15}{x+y}-\frac{2}{x-y}=-1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,则z=x+2y的最大值为2.

查看答案和解析>>

同步练习册答案