精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$(x∈R).
(I)求函数f(x)的单调增区间.
(II)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求a,b的值.

分析 (1)先将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)根据(1)得f(x)的解析式,求出C角,在根据平面向量共线的特征,建立角A,B的关系式,利用余弦定理即可求a,b的值.

解答 解:由f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}-\frac{1}{2}cos2x$-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x-1$
=sin$(2x-\frac{π}{6})$-1,
根据正弦函数图象及性质可得:$2x-\frac{π}{6}∈$[2kπ-$\frac{π}{2}$,2kπ$+\frac{π}{2}$](k∈Z)是增区间.
即2kπ-$\frac{π}{2}$≤$2x-\frac{π}{6}$≤2kπ$+\frac{π}{2}$,解得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$.
∴f(x)的单调增区间为[$-\frac{π}{6}+kπ$,$\frac{π}{3}+kπ$]](k∈Z).
(2)由(1可知)f(x)=sin$(2x-\frac{π}{6})$-1
∴f(C)=sin$(2C-\frac{π}{6})-1$
又f(C)=0,即sin$(2C-\frac{π}{6})-1$=0.
解得:C=$\frac{π}{3}$.
由题意:向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,
则有:sinB-2sinA=0
∴$\frac{1}{2}=\frac{sinA}{sinB}$
由正弦定理可得:b=2a…①
由余弦定理$cosC=\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$
可得:$\frac{1}{2}=\frac{{a}^{2}+{b}^{2}-3}{2ab}$
化简:a2+b2-ab=3…②
由①②解得:a=1,b=2.

点评 本题考查了三角函数的图象和性质的运用,向量的共线问题和正、余弦定理的化简以及计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-$\frac{1}{2}$x2-2x+c.
(1)求函数f(x)的极值;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2,-1),点A(2,-1),若向量$\overrightarrow{AB}$与$\overrightarrow{a}$平行,且|$\overrightarrow{AB}$|=$\sqrt{5}$,求向量$\overrightarrow{OB}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.公差不为0的等差数列{an}的部分项ak1,ak2,ak3…,…构成等比数列{akn},且k1=1,k2=2,k3=6,则k4为(  )
A.20B.22C.24D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.平行四边形ABCD内接于椭圆$\frac{{x}^{2}}{4}$+y2=1,直线AB的斜率k1=1,则直线AD的斜率k2=(  )
A.-2B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图,则该几何体的表面积为(  )
A.πB.2+$\frac{1+\sqrt{5}}{2}π$C.2+$\frac{2+\sqrt{5}}{2}$πD.2+$\frac{1}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}{x+4,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,则不等式f(x)≤2的解集为{x|x≤-2 或0<x≤1 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数g(x)=ax2-2lnx.
(1)讨论g(x)的单调性.
(2)设h(x)=$\frac{1-3a}{2}{x}^{2}+(2+a)lnx-x$(a≠1),f(x)=g(x)+h(x),若存在x0≥1使得f(x0)$<\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解方程:
(1)C${\;}_{13}^{x+1}$=C${\;}_{13}^{2x-3}$;
(2)C${\;}_{x+2}^{x-2}$+C${\;}_{x+2}^{x-3}$=$\frac{1}{10}$A${\;}_{x+3}^{3}$.

查看答案和解析>>

同步练习册答案