精英家教网 > 高中数学 > 题目详情
1.公差不为0的等差数列{an}的部分项ak1,ak2,ak3…,…构成等比数列{akn},且k1=1,k2=2,k3=6,则k4为(  )
A.20B.22C.24D.28

分析 设等差数列{an}的公差为d,由a1,a2,a6成等比数列可求得等比数列ak1,ak2,ak3…的公比q=4,从而可求得ak4,继而可求得k4

解答 解:设等差数列{an}的公差为d,
∵a1,a2,a6成等比数列,
∴a22=a1•a6,即(a1+d)2=a1•(a1+5d),
∴d=3a1
∴a2=4a1
∴等比数列ak1,ak2,ak3…的公比q=4,
∴ak4=a1•q3=a1•43=64a1
又ak4=a1+(k4-1)•d=a1+(k4-1)•(3a1),
∴a1+(k4-1)•(3a1)=64a1,a1≠0,
∴3k4-2=64,
∴k4=22.
故选:B.

点评 本题考查等差数列与等比数列的综合,求得等比数列ak1,ak2,ak3…的公比是关键,考查理解与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知椭圆$\frac{x^2}{m}$+$\frac{y^2}{4}$=1的焦距为4,则该椭圆的长轴长为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.古希腊数学家把1,3,6,10,15,21…叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为59.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{1}{2}$x2+(2m-3)x+lnx(m∈R).
(1)讨论函数f(x)在定义域上的单调性;
(2)若对任意的x∈(1,2),总有f(x)<-2,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于实数x、y,定义新运算x*y=ax+by+2010,其中a、b是常数,等式右边是通常的加法和乘法运算,若3*5=2011,4*9=2009,则1*2=2010.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.周期为4的R上的奇函数f(x)在(0,2)上的解析式为f(x)=$\left\{\begin{array}{l}{x+1,0<x≤1}\\{lo{g}_{2}x+1,1<x<2}\end{array}\right.$,则f(2014)+f(2015)等于(  )
A.-3B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$(x∈R).
(I)求函数f(x)的单调增区间.
(II)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,分别求符合下列条件的选法数:(结果用数字)
(1)有女生但人数必须少于男生;
(2)某女生一定要担任语文课代表;
(3)某男生必须包括在内,但不担任数学课代表;
(4)选取3名男生和2名女生分别担任5门不同学科的课代表,但数学课代表必须由男生担任,语文课代表必须由女生担任.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知命题p:?x∈R,x>sinx,则?p形式的命题是?x∈R,x≤sinx.

查看答案和解析>>

同步练习册答案