精英家教网 > 高中数学 > 题目详情
12.古希腊数学家把1,3,6,10,15,21…叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为59.

分析 观察图中点数,可知每一项中后一项比前一项多的点数为后一项最底层的点数,而第29项比第28项多29个,根据以上两项即可求出第30个三角数比第28个三角数多的点数,从而总结出规律求解.

解答 解:观察图中各项的点数,可知三角数的每一项中后一项比前一项多的点数为后一项最底层的点数,
因而可知第30项比第29个项点数多30个,
而第29项比第28项多29个,
故可求出第30个三角数比第28个三角数多的点数59个.
故答案为:59.

点评 此题主要考查数列的规律性计算,计算时要注意找出规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.由曲线y=$\sqrt{x}$,直线x=1以及坐标轴所围成的平面图形绕x轴旋转一周所得旋转体的体积为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-$\frac{1}{2}$x2-2x+c.
(1)求函数f(x)的极值;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.运行如图所示的伪代码,当输入a=4时,其结果为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(Ⅰ)求证:平面ABC⊥平面APC;
(Ⅱ)若BC=1,AB=4,求三棱锥D-PCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1,x2(x1<x2),且不等式f(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2,-1),点A(2,-1),若向量$\overrightarrow{AB}$与$\overrightarrow{a}$平行,且|$\overrightarrow{AB}$|=$\sqrt{5}$,求向量$\overrightarrow{OB}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.公差不为0的等差数列{an}的部分项ak1,ak2,ak3…,…构成等比数列{akn},且k1=1,k2=2,k3=6,则k4为(  )
A.20B.22C.24D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数g(x)=ax2-2lnx.
(1)讨论g(x)的单调性.
(2)设h(x)=$\frac{1-3a}{2}{x}^{2}+(2+a)lnx-x$(a≠1),f(x)=g(x)+h(x),若存在x0≥1使得f(x0)$<\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

同步练习册答案