精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=|x-a|+m|x+a|(0<m<1,m,a∈R),若对于任意的实数x不等式f(x)≥2恒成立时,实数a的取值范围是{a|a≤-5或a≥5},则所有满足条件的m的组成的集合是{$\frac{1}{5}$}.

分析 根据绝对值的性质得到2m|a|≥2,解出a,得到关于m的方程,解出即可.

解答 解:f(x)=|x-a|+m|x+a|=m(|x-a|+|x+a|)+(1-m)|x-a|≥2m|a|+(1-m)|x-a|≥2m|a|≥2,
解得:a≤-$\frac{1}{m}$或a≥$\frac{1}{m}$,
∵数a的取值范围是{a|a≤-5或a≥5},
故$\frac{1}{m}$=5,解得:m=$\frac{1}{5}$,
∴实数m的集合是{$\frac{1}{5}$}.
故答案为{$\frac{1}{5}$}.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图,一个简单几何体三视图的正视图与侧视图都是边长为1的正三角形,其俯视图的轮廓为正方形,则该几何体的体积是$\frac{\sqrt{3}}{6}$,表面积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.记关于x的不等式$\frac{x-a-1}{x+1}<0$的解集为P,不等式(x-1)2≤1的解集为Q.
(1)若a=3,求集合P;
(2)若a>0且Q∩P=Q,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(x2+1)(x+a)8的展开式中,x8的系数为113,则实数a的值为±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A={x|${log}_{\frac{1}{2}}(x+2)<0$},集合B={x|(x-a)(x-b)<0},若“a=-3”是“A∩B≠∅”的充分条件,则实数b的取值范围是b>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|x-1|,则与y=f(x)相等的函数是(  )
A.g(x)=x-1B.$h(x)=\left\{{\begin{array}{l}{x-1,}&{x>1}\\{1-x,}&{x<1}\end{array}}\right.$
C.$s(x)={(\sqrt{x-1})^2}$D.$t(x)=\sqrt{{{(x-1)}^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}ax+2-3a\;,x<0\\{2^x}-1\;\;,\;\;\;x≥0.\end{array}\right.$若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则实数a的取值范围是(-∞,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线$y=\frac{1}{4}{x^2}$的焦点坐标是(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若${({x-\frac{a}{x^2}})^9}$的二项展开式中含x6项的系数为36,则实数a=-4.

查看答案和解析>>

同步练习册答案