分析 根据绝对值的性质得到2m|a|≥2,解出a,得到关于m的方程,解出即可.
解答 解:f(x)=|x-a|+m|x+a|=m(|x-a|+|x+a|)+(1-m)|x-a|≥2m|a|+(1-m)|x-a|≥2m|a|≥2,
解得:a≤-$\frac{1}{m}$或a≥$\frac{1}{m}$,
∵数a的取值范围是{a|a≤-5或a≥5},
故$\frac{1}{m}$=5,解得:m=$\frac{1}{5}$,
∴实数m的集合是{$\frac{1}{5}$}.
故答案为{$\frac{1}{5}$}.
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)=x-1 | B. | $h(x)=\left\{{\begin{array}{l}{x-1,}&{x>1}\\{1-x,}&{x<1}\end{array}}\right.$ | ||
| C. | $s(x)={(\sqrt{x-1})^2}$ | D. | $t(x)=\sqrt{{{(x-1)}^2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com