精英家教网 > 高中数学 > 题目详情
20.已知集合A={x|${log}_{\frac{1}{2}}(x+2)<0$},集合B={x|(x-a)(x-b)<0},若“a=-3”是“A∩B≠∅”的充分条件,则实数b的取值范围是b>-1.

分析 分别求出关于A、B的不等式,通过A∩B≠∅”,求出b的范围即可.

解答 解:A={x|${log}_{\frac{1}{2}}(x+2)<0$}={x|x>-1},
B={x|(x-a)(x-b)<0}=(-3,b)或(b,-3),
由“A∩B≠∅”,得b>-1,
故答案为:b>-1.

点评 本题考查了充分必要条件,考查对数函数以及解不等式问题,考查集合的关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设复数z1=-1+2i,z2=2+i,其中i为虚数单位,则z1•z2=(  )
A.-4B.3iC.-3+4iD.-4+3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|(x+3)(x-1)≤0},B={x|y=lg(x2-x-2)},则A∩(CRB)=(  )
A.[-3,-1)B.[-3,-1]C.[-1,1]D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,已知过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点A2作一个圆,该圆与其渐近线bx-ay=0交于点P,Q,若∠PA2Q=90°,|PQ|=2|OP|,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,过F2作x轴的垂线与双曲线交于A、B两点,G是△ABF1的重心,且$\overrightarrow{GA}$•$\overrightarrow{{F}_{1}B}$=0,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=|x-a|+m|x+a|(0<m<1,m,a∈R),若对于任意的实数x不等式f(x)≥2恒成立时,实数a的取值范围是{a|a≤-5或a≥5},则所有满足条件的m的组成的集合是{$\frac{1}{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=2-\frac{3}{x}$,若g(x)=f(x)-m为奇函数,则实数m的值为(  )
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某市家庭煤气的使用量x(m3)和煤气费f(x)(元) 满足关系f(x)=$\left\{\begin{array}{l}{C,0<x≤A}\\{C+B(x-A),x>A}\end{array}\right.$,已知某家庭今年前三个月的煤气费如表:
月份用气量煤气费
一月份4m34 元
二月份25m314 元
三月份35m319 元
若四月份该家庭使用了20m3的煤气,则其煤气费为(  )元.
A.10.5B.10C.11.5D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x0∈(-∞,0),2x0<3x0,命题$q:?x∈({0,\frac{π}{2}}),sinx<x$,则下列命题中真命题是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

同步练习册答案