【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在髙三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到表中数据,根据表中的数据,能否有的把握认为视力与学习成绩有关系?
(3)在(2)中调查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步调查他们良好的护眼习惯,求在这人中任取人,恰好有人的年级名次在名的概率.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
(1)分别写出两种产品的收益与投资的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大利润,其最大收
益为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足,.
(1)求椭圆及其“准圆”的方程;
(2)若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于、两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具厂生产一种课桌,每张课桌的成本为50元,出厂单价为80元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部课桌出厂单价降低0.02元.根据市场调查,销售商一次订购量不会超过1000张.
(Ⅰ)设一次订购量为张,课桌的实际出厂单价为元,求关于的函数关系式;
(Ⅱ)当一次性订购量为多少时,该家具厂这次销售课桌所获得的利润最大?其最大利润是多少元?(该家具厂出售一张课桌的利润=实际出厂单价-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,C.已知3cos(B-C)-1=6cosBcosC.
(1)求cosA;
(2)若a=3,△ABC的面积为2 ,求b,C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题关于的不等式的解集是,命题函数的定义域为.
(1)如果为真命题,求实数的取值范围;
(2)如果为真命题, 为假命题, 求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com