精英家教网 > 高中数学 > 题目详情
20.设a=30.2,b=log43,c=log0.5(m2+1),则(  )
A.c<b<aB.c<a<bC.a<b<cD.b<c<a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:a=30.2>30=1,0=log41<b=log43<log44=1,c=log0.5(m2+1)<log0.51=0.
∴c<b<a,
故选:A.

点评 本题考查了指数函数与对数函数的单调性,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某人一次投掷三枚骰子,最大点数为3的概率是$\frac{19}{216}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}中,a3,a5 是方程x2-34x+64=0的两根,则a4等于(  )
A.8B.-8C.±8D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.延迟退休年龄的问题,近期引发社会的关注. 人社部于2012年7月25日上午召开新闻发布会表示,我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.推迟退休年龄似乎是一种必然趋势,然而反对的声音也随之而起.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽取了50人,他们月收入的频数分布及对“延迟退休年龄”反对的人数
月收入(元)[1000,2000)[2000,3000)[3000,4000)[4000,5000)[5000,6000)[6000,7000)
频数510151055
反对人数4812521
根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01的前提下认为月收入以5000为分界点的“延迟退休年龄”的态度有差异?
 月收入不低于5000元的人数月收入低于5000元的人数总计
反对   
赞成   
总计   
附:临界值表
P(k2≥k00.050.0250.0100.005
k03.8415.0246.6357.879
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
爱看课外书不爱看课外书总计
作文水平好 
作文水平一般 
总计
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若曲线f(x)=acosx+sinx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=(  )
A.-lB.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x为实数,则$y=\sqrt{27-3x}+\sqrt{5x-15}$的最大值为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(1,-10),且$\overrightarrow{m}$•$\overrightarrow{n}$=0
(Ⅰ)求tanA的值;
(Ⅱ)求函数f(x)=cos2x+tanAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列语言中,哪一个是输入语句(  )
A.PRINTB.INPUTC.IFD.LET

查看答案和解析>>

同步练习册答案