精英家教网 > 高中数学 > 题目详情
1.已知直线l1过点A(-1,0),且斜率为k,直线l2过点B(1,0),且斜率为-2k,其中k≠0,又直线l1与l2交于点M.
(1)求动点M的轨迹方程;
(2)若过点N($\frac{1}{2}$,1)的直线l交动点M的轨迹于C、D两点,且N为线段CD的中点,求直线l的方程.

分析 (1)设M坐标为(x,y),表示出两直线方程,联立消去k即可确定出M的轨迹方程;
(2)设出C与D坐标,分别代入M的轨迹方程,整理由根据N为CD中点,求出直线l斜率,即可确定出直线l方程.

解答 解:(1)设M(x,y),
∵直线l1与l2交于点M,
∴联立得:$\left\{\begin{array}{l}{y=k(x+1)}\\{y=-\frac{2}{k}(x-1)}\end{array}\right.$(k≠0),
消去k得:$\frac{{y}^{2}}{{x}^{2}-1}$=-2,
则动点M的轨迹方程为2x2+y2=2(x≠±1);
(2)由(1)得M的轨迹方程为2x2+y2=2(x≠±1),
设点C(x1,y1),D(x2,y2),则有2x12+y12=2①,2x22+y22=2②,
①-②得:2(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0,即$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-2×$\frac{{x}_{1}+{x}_{2}}{{y}_{1}+{y}_{2}}$,
∵N($\frac{1}{2}$,1)为CD的中点,
∴x1+x2=1,y1+y2=2,
∴直线l的斜率k=-1,
∴直线l的方程为y-1=-(x-$\frac{1}{2}$),即2x+2y-3=0.

点评 此题考查了轨迹方程,直线的点斜式方程,熟练掌握运算性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.定义min{f(x),g(x)}为f(x)与g(x)中值的较小者,则函数f(x)=min{2-x2,x}的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:关于x的不等式sinx≥a恒成立,命题q:y=-(5-2a)x为减函数,若命题p,q中至少有一个是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,D是BC中点,E是AD中点,CE的延长线交AB于点F,若$\overrightarrow{DF}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=(  )
A.$-\frac{2}{3}$B.$-\frac{3}{4}$C.$\frac{6}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z=-1-i(i为虚数单位),z的共轭复数为$\overline{z}$,则|z•$\overline{z}$|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设等差数列{an}的前n项和为Sn,且满足S17>0,S18<0,则Sn取最大值时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C的方程:x2+y2-2x-4y+m=0
(1)求m的取值范围;
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{{4\sqrt{5}}}{5}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
(1)求证:f(x)是R上的增函数;
(2)若f(2)=3,解不等式f(m-2)<3.

查看答案和解析>>

同步练习册答案