精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。

(1)求证:AD⊥PB;
(2)求异面直线PD与AB所成角的余弦值;
(3)求平面PAB与平面PCD所成锐二面角的大小.
⑴利用面面垂直的性质得到线面垂直,然后再由线面垂直证得线线垂直;⑵;⑶

试题分析:⑴取AB的中点O,连接PO,因为PA=PB,则PO⊥AB,
又∵ 平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO平面PAB,
∴PO⊥平面ABCD,∴PO⊥AD,    2分
而AD⊥AB,PO∩AB=O,∴AD⊥平面PAB,∴AD⊥PB。    4分
⑵过O作AD的平行线为x轴,以OB、OP所在直线分别为y、z轴,建立如图的空间直角坐标系,则A(0,-1,0),D(2,-1,0),B(0,1,0),C(2,1,0),

=(2,-1,-2),=(0,2,0),cos<>==-
即异面直线PD与AB所成角的余弦值为。    8分
⑶易得平面PAB的一个法向量为n=(1,0 ,0)。
设平面PCD的一个法向量为m=(x,y,z),由⑵知=(2,-1,-2),=(0,-2,0),则,即,解得x=z,
令x=1,则m=(1,0,1),   .10分
则cos<n,m>==
即平面PAB与平面PCD所成锐二面角的大小为。    .12分
点评:空间各种角问题最终都可以转化为线线角求解,可用空间向量的数量积及其夹角余弦公式求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在长方体中,与平面所成角的正弦值为 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平面⊥平面,四边形是直角梯形,分别为的中点.

(Ⅰ) 用几何法证明:平面
(Ⅱ)用几何法证明:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且,则下列结论中不正确的是(  )
A.B.四边形是矩形
C.是棱台D.是棱柱

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是三条不同的直线,是三个不同的平面,给出以下命题:
①若,则; ②若,则;③若,则;④若,则
其中正确命题的序号是(   )   
A.②④B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD中,在AB、BC、DC、DA上分别取E、F、G、H四点,如果GH、EF交于一点P,则                                    (   )
A.P一定在直线BD上         
B.P一定在直线AC上
C.P在直线AC或BD上      
D.P既不在直线BD上,也不在AC上

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1.

(1)证明:MN∥平面A1ABB1
(2)求几何体C—MNA的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,分别是棱的中点,则异面直线所成的角等于__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间中互不相同的直线,是不重合的两平面,则下列命题中为真命题的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案