精英家教网 > 高中数学 > 题目详情
已知函数为常数,且).
(1)当时,求函数的最小值(用表示);
(2)是否存在不同的实数使得,并且,若存在,求出实数的取值范围;若不存在,请说明理由.
(1)函数的最小值为
(2)满足条件的存在,取值范围为.

试题分析:(1)构造新函数,分两种情况讨论即可;(2)假设存在,则由已知得 ,等价于在区间上有两个不同的实根,作出函数图象,可得

试题解析:(1)令                 1分
时,            4分
时,7分
综上:.                        8分
(2)解法一:假设存在,则由已知得
,等价于在区间上有两个不同的实根 11分
,则上有两个不同的零点
.  15分
解法2:假设存在,则由已知得

等价于在区间上有两个不同的实根 11分
等价于,作出函数图象,可得.  15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.
(1)求证:f(x)在R上是减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知9x-10×3x+9≤0,求函数y=-4+2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(  )
A.恒为正数B.恒为负数
C.恒为0D.可正可负

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是(  )
A.增函数B.减函数C.先增后减D.先减后增

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时t的取值范围是(  )
A.-2≤t≤2B.-≤t≤
C.t≤-2或t=0或t≥2D.t≤-或t=0或t≥

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=log5(2x+1)的单调增区间是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是(  ).
A.f(x)=-x|x| B.f(x)=x3
C.f(x)=sin xD.f(x)=

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①函数上单调递增;
②若函数上单调递减,则;
③若,则
④若是定义在上的奇函数,则.
其中正确的序号是                  .

查看答案和解析>>

同步练习册答案