精英家教网 > 高中数学 > 题目详情
已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.
(1)求证:f(x)在R上是减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.
(1)见解析  (2) 最大值为2,最小值为-2
(1)方法一:∵函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),
∴令x=y=0,得f(0)=0.
再令y=-x,得f(-x)=-f(x).
在R上任取x1>x2,则x1-x2>0,
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).
又∵x>0时,f(x)<0,而x1-x2>0,
∴f(x1-x2)<0,
即f(x1)<f(x2).
因此f(x)在R上是减函数.
方法二:设x1>x2,
则f(x1)-f(x2)
=f(x1-x2+x2)-f(x2)
=f(x1-x2)+f(x2)-f(x2)
=f(x1-x2).
又∵x>0时,f(x)<0,而x1-x2>0,
∴f(x1-x2)<0,
即f(x1)<f(x2),
∴f(x)在R上为减函数.
(2)∵f(x)在R上是减函数,
∴f(x)在[-3,3]上也是减函数,
∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).
而f(3)="3f(1)=-2,f" (-3)=-f(3)=2.
∴f(x)在[-3,3]上的最大值为2,最小值为-2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值.
(2)用定义证明f(x)在(-∞,+∞)上为减函数.
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数,且).
(1)当时,求函数的最小值(用表示);
(2)是否存在不同的实数使得,并且,若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,判断函数的奇偶性,并加以证明;
(2)若函数上是增函数,求实数的取值范围;
(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域为,其图象上任一点满足,则给出以下四个命题:
①函数一定是偶函数;     ②函数可能是奇函数;
③函数单调递增; ④若是偶函数,其值域为
其中正确的序号为_______________.(把所有正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=则该函数为(  )
A.单调递增函数,奇函数
B.单调递增函数,偶函数
C.单调递减函数,奇函数
D.单调递减函数,偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在实数集中定义一种运算“”,对任意为唯一确定的实数,且具有性质:
(1)对任意
(2)对任意
关于函数的性质,有如下说法:①函数的最小值为;②函数为偶函数;③函数的单调递增区间为
其中所有正确说法的个数为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

a>0,b>0,e为自然对数的底数,ea+2a=eb+3b,则ab的大小关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=单调递减,那么实数a的取值范围是(  )
A.(0,1)B.(0,)
C.[,)D.[,1)

查看答案和解析>>

同步练习册答案