精英家教网 > 高中数学 > 题目详情
已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(  )
A.恒为正数B.恒为负数
C.恒为0D.可正可负
A
利用奇函数的性质f(0)=0以及等差数列的性质a1+a5=2a3,关键判断f(a1)+f(a5)>0.
由于f(x)是R上的单调增函数且为奇函数,且a3>0,所以f(a3)>f(0)=0.
而a1+a5=2a3,所以a1+a5>0,则a1>-a5,
于是f(a1)>f(-a5),即f(a1)>-f(a5),
因此f(a1)+f(a5)>0,
所以有f(a1)+f(a3)+f(a5)>0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值.
(2)用定义证明f(x)在(-∞,+∞)上为减函数.
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数,且).
(1)当时,求函数的最小值(用表示);
(2)是否存在不同的实数使得,并且,若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的奇函数满足,且在上是增函数,则有( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,说明a可取哪些值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=则该函数为(  )
A.单调递增函数,奇函数
B.单调递增函数,偶函数
C.单调递减函数,奇函数
D.单调递减函数,偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知偶函数f(x)当x∈[0,+∞)时是单调递增函数,则满足f()<f(x)的x的取值范围是(  )
A.(2,+∞)B.(-∞,-1)
C.[-2,-1)∪(2,+∞)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在实数集中定义一种运算“”,对任意为唯一确定的实数,且具有性质:
(1)对任意
(2)对任意
关于函数的性质,有如下说法:①函数的最小值为;②函数为偶函数;③函数的单调递增区间为
其中所有正确说法的个数为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数yf(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(20.2f(20.2),b=(ln 2)·f(ln 2),c·f,则abc的大小关系是(  ).
A.a>b>cB.b>a>c
C.c>a>bD.a>c>b

查看答案和解析>>

同步练习册答案