精英家教网 > 高中数学 > 题目详情
7.若复数z=(cosθ-$\frac{4}{5}$)+(sinθ-$\frac{3}{5}$)i是纯虚数(i为虚数单位),则tan(θ-$\frac{π}{4}$)的值为-7.

分析 由已知可得cos$θ=\frac{4}{5}$,sin$θ=-\frac{3}{5}$,进一步得到tan$θ=-\frac{3}{4}$.代入两角差的正切得答案.

解答 解:∵复数z=(cosθ-$\frac{4}{5}$)+(sinθ-$\frac{3}{5}$)i是纯虚数,
∴$\left\{\begin{array}{l}{cosθ-\frac{4}{5}=0}\\{sinθ-\frac{3}{5}≠0}\end{array}\right.$,则cos$θ=\frac{4}{5}$,sin$θ=-\frac{3}{5}$,即tan$θ=-\frac{3}{4}$.
∴tan(θ-$\frac{π}{4}$)=$\frac{tanθ-tan\frac{π}{4}}{1+tanθtan\frac{π}{4}}=\frac{-\frac{3}{4}-1}{1-\frac{3}{4}×1}=-7$.
故答案为:-7.

点评 本题考查复数的基本概念,考查了两角和与差的正切,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.5双不同号码的鞋,任取4只,恰好取到一双的概率为$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x||x|<2,x∈Z},B={-1,0,1,2,3},则A∩B=(  )
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}x+2,x≥2\\{x^2},0≤x<2\end{array}$,则f(f(${\frac{3}{2}}$))=(  )
A.$\frac{9}{4}$B.$\frac{7}{2}$C.$\frac{17}{4}$D.$\frac{81}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{2^{-x}}+1,x≤0\\ m-{x^2},x>0\end{array}$,给出下列两个命题:
命题p:若m=9,则f(f(-1))=0.
命题q:?m∈(-∞,0),方程f(x)=m有解.
(1)判断命题p、命题q的真假,并说明理由;
(2)判断命题¬p、p∧q、p∨q、p∧(¬q)的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{π(x-3a)(x-2a),x≥1}\end{array}\right.$,若f(x)恰有2个零点,则实数a的取值范围是$[\frac{1}{3},\frac{1}{2})$∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将分针拨快20分钟,则分针转过的弧度数为(  )
A.-$\frac{2π}{3}$B.$\frac{2π}{3}$C.-$\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知Sn为等差数列{an}的前n项和,且a4=7,S4=16.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.点A(5,1)关于x轴的对称点为B(x1,y1),关于原点的对称点为C(x2,y2).
(1)求△ABC中过BA,BC边上的中点所在的直线方程;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案