精英家教网 > 高中数学 > 题目详情
14.在锐角△ABC中,角A,B,C的对边分别是a,b,c,且2asinB=$\sqrt{3}$b.
(Ⅰ)求角A的大小;
(Ⅱ)当a=2时,求△ABC面积的最大值.

分析 (Ⅰ)由已知利用正弦定理可得2sinAsinB=$\sqrt{3}$sinB,结合sinB>0,可得sinA=$\frac{\sqrt{3}}{2}$,结合△ABC为锐角三角形,即可求A的值.
(Ⅱ)设角A,B,C所对的边分别为a.b.c.由余弦定理得4=b2+c2-2bccos60°=b2+c2-bc,又b2+c2-bc≥2bc-bc=bc,可求bc≤4,利用三角形面积公式即可得解.

解答 (本题满分10分)
解:(Ⅰ)∵2asinB=$\sqrt{3}$b,
∴2sinAsinB=$\sqrt{3}$sinB,
∵sinB>0,∴2sinA=$\sqrt{3}$,
故sinA=$\frac{\sqrt{3}}{2}$,
因为△ABC为锐角三角形,所以A=60°.(4分)
(Ⅱ)设角A,B,C所对的边分别为a.b.c.
由题意知a=2,
由余弦定理得4=b2+c2-2bccos60°=b2+c2-bc,
又b2+c2-bc≥2bc-bc=bc,
∴bc≤4,
∴${S}_{△ABC}=\frac{1}{2}bcsin60°$=$\frac{\sqrt{3}}{4}bc≤\frac{\sqrt{3}}{4}×4=\sqrt{3}$,
当且仅当△ABC为等边三角形时取等号,
所以△ABC面积的最大值为$\sqrt{3}$.                    (10分)

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆M:x2+y2-4x+4y-4=0,直线l:x-y-5=0
(1)求圆心M到直线l的距离;
(2)求直线l被圆所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1  2  3  4  5  67
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,预测该地区2015年农村居民家庭人均纯收入.
附:回归直线y=bx+a的斜率和截距的最小二乘估计公式分别为:b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,a=$\overline{y}$-b$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若一组数据a1,a2,…,an的方差是5,则一组新数据2a1,2a2,…,2an的方差是(  )
A.5B.10C.20D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知不等式$\sqrt{x}+\sqrt{y}≤a\sqrt{x+y}$对一切x>0,y>0恒成立,则实数a的取值范围为[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.假设要抽查的某种品牌的850颗种子的发芽率,抽取60粒进行试验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数从7开始向右读,则检测的第3颗种子的编号为(  )(下面的数据摘自随机数表第7行至第9行)
A.785B.555C.567D.199

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点A(x,y)为函数y=$\frac{1}{x}$图象上在第一象限内的动点,若x3+y3≥a(x+y)2恒成立,则实数a的取值范围是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{m}$=(2cosωx,1),$\overrightarrow{n}$=($\sqrt{3}$sinωx-cosωx,a),其中(x∈R,ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期为π,最大值为3.
(1)求ω和常数a的值;
(2)求当x∈[0,$\frac{π}{2}$]时,函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知{an}满足a1=1,an=2an-1+1(n≥2),则an=2n-1.

查看答案和解析>>

同步练习册答案