精英家教网 > 高中数学 > 题目详情
7.一个几何体的三视图如图所示(单位:m),则该几何体的体积为$\frac{8π}{3}$m3

分析 根据几何体的三视图,得出该几何体是圆柱与两个圆锥的组合体,结合图中数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是底面相同的圆柱与两个圆锥的组合体,
且圆柱底面圆的半径为1,高为2,圆锥底面圆的半径为1,高为1;
∴该几何体的体积为
V几何体=2×$\frac{1}{3}$π•12×1+π•12•2
=$\frac{8}{3}$π.
故答案为:$\frac{8}{3}$π.

点评 本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若空间中n个不同的点两两距离都相等,则正整数n的取值(  )
A.至多等于3B.至多等于4C.等于5D.大于5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.
(1)圆C的标准方程为(x-1)2+(y-$\sqrt{2}$)2=2.
(2)圆C在点B处切线在x轴上的截距为-1-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC
(Ⅰ) 求$\frac{sin∠B}{sin∠C}$.
(Ⅱ) 若∠BAC=60°,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.-10B.6C.14D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$,且点M和N分别为B1C和D1D的中点.
(Ⅰ)求证:MN∥平面ABCD
(Ⅱ)求二面角D1-AC-B1的正弦值;
(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为$\frac{1}{3}$,求线段A1E的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中的元素个数(  )
命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;
命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)
A.命题①和命题②都成立B.命题①和命题②都不成立
C.命题①成立,命题②不成立D.命题①不成立,命题②成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(Ⅰ)写出⊙C的直角坐标方程;
(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(  )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关

查看答案和解析>>

同步练习册答案