16£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®
£¨¢ñ£©Ð´³ö¡ÑCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©PΪֱÏßlÉÏÒ»¶¯µã£¬µ±Pµ½Ô²ÐÄCµÄ¾àÀë×îСʱ£¬ÇóPµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨I£©ÓÉ¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®»¯Îª¦Ñ2=2$\sqrt{3}¦Ñsin¦È$£¬°Ñ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£»£®
£¨II£©ÉèP$£¨3+\frac{1}{2}t£¬\frac{\sqrt{3}}{2}t£©$£¬ÓÖC$£¨0£¬\sqrt{3}£©$£®ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃ|PC|=$\sqrt{{t}^{2}+12}$£¬ÔÙÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÓÉ¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®
¡à¦Ñ2=2$\sqrt{3}¦Ñsin¦È$£¬»¯Îªx2+y2=$2\sqrt{3}y$£¬
Å䷽Ϊ${x}^{2}+£¨y-\sqrt{3}£©^{2}$=3£®
£¨II£©ÉèP$£¨3+\frac{1}{2}t£¬\frac{\sqrt{3}}{2}t£©$£¬ÓÖC$£¨0£¬\sqrt{3}£©$£®
¡à|PC|=$\sqrt{£¨3+\frac{1}{2}t£©^{2}+£¨\frac{\sqrt{3}}{2}t-\sqrt{3}£©^{2}}$=$\sqrt{{t}^{2}+12}$¡Ý2$\sqrt{3}$£¬
Òò´Ëµ±t=0ʱ£¬|PC|È¡µÃ×îСֵ2$\sqrt{3}$£®´ËʱP£¨3£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄÓ¦Óá¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®iΪÐéÊýµ¥Î»£¬i607=£¨¡¡¡¡£©
A£®-iB£®iC£®1D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºm£©£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\frac{8¦Ð}{3}$m3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èôa=log43£¬Ôò2a+2-a=$\frac{4\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÉèiÊÇÐéÊýµ¥Î»£¬Ôò¸´Êýi-$\frac{1}{i}$=2i£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{16}+\frac{y^2}{12}=1$£¬µãMÓëCµÄ½¹µã²»Öغϣ¬ÈôM¹ØÓÚCµÄÁ½½¹µãµÄ¶Ô³Æµã·Ö±ðΪP£¬Q£¬Ïß¶ÎMNµÄÖеãÔÚCÉÏ£¬Ôò|PN|+|QN|=16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÉèÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬µãOÎª×ø±êÔ­µã£¬µãAµÄ×ø±êΪ£¨a£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬b£©£¬µãMÔÚÏß¶ÎABÉÏ£¬Âú×ã|BM|=2|MA|£¬Ö±ÏßOMµÄбÂÊΪ$\frac{\sqrt{5}}{10}$
£¨¢ñ£©ÇóEµÄÀëÐÄÂÊe£»
£¨¢ò£©ÉèµãCµÄ×ø±êΪ£¨0£¬-b£©£¬NΪÏß¶ÎACµÄÖе㣬µãN¹ØÓÚÖ±ÏßABµÄ¶Ô³ÆµãµÄ×Ý×ø±êΪ$\frac{7}{2}$£¬ÇóEµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2+2$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©-4=0£¬ÇóÔ²CµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{2-|x|£¬x¡Ü2}\\{£¨x-2£©^{2}£¬x£¾2}\end{array}\right.$£¬º¯Êýg£¨x£©=b-f£¨2-x£©£¬ÆäÖÐb¡ÊR£¬Èôº¯Êýy=f£¨x£©-g£¨x£©Ç¡ÓÐ4¸öÁãµã£¬ÔòbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{7}{4}$£¬+¡Þ£©B£®£¨-¡Þ£¬$\frac{7}{4}$£©C£®£¨0£¬$\frac{7}{4}$£©D£®£¨$\frac{7}{4}$£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸