·ÖÎö £¨I£©ÓÉ¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®»¯Îª¦Ñ2=2$\sqrt{3}¦Ñsin¦È$£¬°Ñ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£»£®
£¨II£©ÉèP$£¨3+\frac{1}{2}t£¬\frac{\sqrt{3}}{2}t£©$£¬ÓÖC$£¨0£¬\sqrt{3}£©$£®ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃ|PC|=$\sqrt{{t}^{2}+12}$£¬ÔÙÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©ÓÉ¡ÑCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®
¡à¦Ñ2=2$\sqrt{3}¦Ñsin¦È$£¬»¯Îªx2+y2=$2\sqrt{3}y$£¬
Å䷽Ϊ${x}^{2}+£¨y-\sqrt{3}£©^{2}$=3£®
£¨II£©ÉèP$£¨3+\frac{1}{2}t£¬\frac{\sqrt{3}}{2}t£©$£¬ÓÖC$£¨0£¬\sqrt{3}£©$£®
¡à|PC|=$\sqrt{£¨3+\frac{1}{2}t£©^{2}+£¨\frac{\sqrt{3}}{2}t-\sqrt{3}£©^{2}}$=$\sqrt{{t}^{2}+12}$¡Ý2$\sqrt{3}$£¬
Òò´Ëµ±t=0ʱ£¬|PC|È¡µÃ×îСֵ2$\sqrt{3}$£®´ËʱP£¨3£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄÓ¦Óá¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨$\frac{7}{4}$£¬+¡Þ£© | B£® | £¨-¡Þ£¬$\frac{7}{4}$£© | C£® | £¨0£¬$\frac{7}{4}$£© | D£® | £¨$\frac{7}{4}$£¬2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com