精英家教网 > 高中数学 > 题目详情
11.设i是虚数单位,则复数i-$\frac{1}{i}$=2i.

分析 直接利用复数的运算法则求解即可.

解答 解:复数i-$\frac{1}{i}$=i-$\frac{i}{i•i}$=i+i=2i.
故答案为:2i.

点评 本题考查复数的基本运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设D为△ABC所在平面内一点,$\overrightarrow{BC}=3\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}=-\frac{1}{3}\overrightarrow{AB}+\frac{4}{3}\overrightarrow{AC}$B.$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}-\frac{4}{3}\overrightarrow{AC}$C.$\overrightarrow{AD}=\frac{4}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$D.$\overrightarrow{AD}=\frac{4}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.-10B.6C.14D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中的元素个数(  )
命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;
命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)
A.命题①和命题②都成立B.命题①和命题②都不成立
C.命题①成立,命题②不成立D.命题①不成立,命题②成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(Ⅰ)写出⊙C的直角坐标方程;
(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从1,2,3,4,5中有放回的依次取出两个数,则下列各对事件中是互斥事件的是(  )
A.恰有1个是奇数和全是奇数B.恰有1个是偶数和至少有1个是偶数
C.至少有1个是奇数和全是奇数D.至少有1个是偶数和全是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.
求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).当a=2$\sqrt{2}$-2时,g(a)的值最小.

查看答案和解析>>

同步练习册答案