精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是(  )
A.($\frac{7}{4}$,+∞)B.(-∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

分析 求出函数y=f(x)-g(x)的表达式,构造函数h(x)=f(x)+f(2-x),作出函数h(x)的图象,利用数形结合进行求解即可.

解答 解:∵g(x)=b-f(2-x),
∴y=f(x)-g(x)=f(x)-b+f(2-x),
由f(x)-b+f(2-x)=0,得f(x)+f(2-x)=b,
设h(x)=f(x)+f(2-x),
若x≤0,则-x≥0,2-x≥2,
则h(x)=f(x)+f(2-x)=2+x+x2
若0≤x≤2,则-2≤-x≤0,0≤2-x≤2,
则h(x)=f(x)+f(2-x)=2-x+2-|2-x|=2-x+2-2+x=2,
若x>2,-x<-2,2-x<0,
则h(x)=f(x)+f(2-x)=(x-2)2+2-|2-x|=x2-5x+8.
即h(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,}&{x≤0}\\{2,}&{0<x≤2}\\{{x}^{2}-5x+8,}&{x>2}\end{array}\right.$,
作出函数h(x)的图象如图:
当x≤0时,h(x)=2+x+x2=(x+$\frac{1}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,
当x>2时,h(x)=x2-5x+8=(x-$\frac{5}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,
故当b=$\frac{7}{4}$时,h(x)=b,有两个交点,
当b=2时,h(x)=b,有无数个交点,
由图象知要使函数y=f(x)-g(x)恰有4个零点,
即h(x)=b恰有4个根,
则满足$\frac{7}{4}$<b<2,
故选:D.

点评 本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(Ⅰ)写出⊙C的直角坐标方程;
(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(  )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是(  )
A.[$-\frac{3}{2e},1$)B.[$-\frac{3}{2e},\frac{3}{4}$)C.[$\frac{3}{2e},\frac{3}{4}$)D.[$\frac{3}{2e},1$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).当a=2$\sqrt{2}$-2时,g(a)的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知${\overrightarrow e_1},{\overrightarrow e_2}$是空间单位向量,${\overrightarrow e_1}•{\overrightarrow e_2}=\frac{1}{2}$,若空间向量$\overrightarrow b$满足$\overrightarrow b•{\overrightarrow e_1}=2,\overrightarrow b•{\overrightarrow e_2}=\frac{5}{2}$,且对于任意x,y∈R,$|{\overrightarrow b-(x\overrightarrow{e_1}+y\overrightarrow{e_2})}|≥|{\overrightarrow b-({x_0}\overrightarrow{e_1}+{y_0}\overrightarrow{e_2})}|$=1(x0,y0∈R),则x0=1,y0=2,$|{\overrightarrow b}$|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是(  )
A.s≤$\frac{3}{4}$B.s≤$\frac{5}{6}$C.s≤$\frac{11}{12}$D.s≤$\frac{25}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=log2(x2+2x-3)的定义域是(  )
A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2.
(Ⅰ)求fn′(2);
(Ⅱ)证明:fn(x)在(0,$\frac{2}{3}$)内有且仅有一个零点(记为an),且0<an-$\frac{1}{2}$<$\frac{1}{3}$($\frac{2}{3}$)n

查看答案和解析>>

同步练习册答案