精英家教网 > 高中数学 > 题目详情
20.执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是(  )
A.s≤$\frac{3}{4}$B.s≤$\frac{5}{6}$C.s≤$\frac{11}{12}$D.s≤$\frac{25}{24}$

分析 模拟执行程序框图,依次写出每次循环得到的k,S的值,当S>$\frac{11}{12}$时,退出循环,输出k的值为8,故判断框图可填入的条件是S$≤\frac{11}{12}$.

解答 解:模拟执行程序框图,k的值依次为0,2,4,6,8,
因此S=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}$(此时k=6),
因此可填:S$≤\frac{11}{12}$.
故选:C.

点评 本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为$\frac{\sqrt{5}}{10}$
(Ⅰ)求E的离心率e;
(Ⅱ)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为$\frac{7}{2}$,求E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1,C2的极坐标方程;
(Ⅱ)若直线C3的极坐标方程为θ=$\frac{π}{4}$(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是(  )
A.($\frac{7}{4}$,+∞)B.(-∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3},B={2,3},则(  )
A.A=BB.A∩B=∅C.A$\stackrel{?}{≠}$BD.B$\stackrel{?}{≠}$A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,B=120°,AB=$\sqrt{2}$,A的角平分线AD=$\sqrt{3}$,则AC=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{{3{x^2}+ax}}{e^x}$(a∈R)
(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足a3=2,前3项和S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设等比数列{bn}满足b1=a1,b4=a15,求{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“对任意x$∈(0,\frac{π}{2})$,ksinxcosx<x”是“k<1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案