精英家教网 > 高中数学 > 题目详情
7.已知圆C的极坐标方程为ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)-4=0,求圆C的半径.

分析 先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.

解答 解:圆的极坐标方程为ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)-4=0,可得ρ2-2ρcosθ+2ρsinθ-4=0,
化为直角坐标方程为x2+y2-2x+2y-4=0,
化为标准方程为(x-1)2+(y+1)2=6,
圆的半径r=$\sqrt{6}$.

点评 本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC
(Ⅰ) 求$\frac{sin∠B}{sin∠C}$.
(Ⅱ) 若∠BAC=60°,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(Ⅰ)写出⊙C的直角坐标方程;
(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R,
(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;
(Ⅱ)若?x>0,f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.
求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln$\frac{1+x}{1-x}$,
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求证,当x∈(0,1)时,f(x)>$2(x+\frac{{x}^{3}}{3})$;
(Ⅲ)设实数k使得f(x)$>k(x+\frac{{x}^{3}}{3})$对x∈(0,1)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(  )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是(  )
A.[$-\frac{3}{2e},1$)B.[$-\frac{3}{2e},\frac{3}{4}$)C.[$\frac{3}{2e},\frac{3}{4}$)D.[$\frac{3}{2e},1$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=log2(x2+2x-3)的定义域是(  )
A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

同步练习册答案