已知函数.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.
(Ⅰ)(Ⅱ)单调递增区间为和,
单调递减区间为(Ⅲ)
【解析】函数的定义域为,.………1分
(Ⅰ)当时,函数,,.
所以曲线在点处的切线方程为,
即.………………………3分
(Ⅱ)函数的定义域为.
(1)当时,在上恒成立,
则在上恒成立,此时在上单调递减. ……………4分
(2)当时,,
(ⅰ)若,
由,即,得或; ………………5分
由,即,得.………………………6分
所以函数的单调递增区间为和,
单调递减区间为. ……………………………………7分
(ⅱ)若,在上恒成立,则在上恒成立,此时 在上单调递增. ………………………………………………………………8分
(Ⅲ))因为存在一个使得,
则,等价于.…………………………………………………9分
令,等价于“当 时,”.
对求导,得.……………………………………………10分
因为当时,,所以在上单调递增. ……………12分
所以,因此. …………………………………………13分
另【解析】
设,定义域为,
.
依题意,至少存在一个,使得成立,
等价于当 时,. ………………………………………9分
(1)当时,
在恒成立,所以在单调递减,只要,
则不满足题意.…… 10分
(2)当时,令得.
(ⅰ)当,即时,
在上,所以在上单调递增,
所以,由得,,所以.………11分
(ⅱ)当,即时,
在上,所以在单调递减,
所以,由得.………………12分
(ⅲ)当,即时, 在上,在上,
所以在单调递减,在单调递增,
,等价于或,解得,所以,.
综上所述,实数的取值范围为.………………………………………13分
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十三第十章第十节练习卷(解析版) 题型:选择题
下面是2×2列联表:
| y1 | y2 | 总计 |
x1 | a | 21 | 73 |
x2 | 22 | 25 | 47 |
总计 | b | 46 | 120 |
则表中a,b的值分别为( )
(A)94,72 (B)52,50
(C)52,74 (D)74,52
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
已知函数.
(Ⅰ)若函数在上不是单调函数,求实数的取值范围;
(Ⅱ)当时,讨论函数的零点个数.
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
已知函数,其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
已知函数,函数是函数的导函数.
(1)若,求的单调减区间;
(2)若对任意,且,都有,求实数的取值范围;
(3)在第(2)问求出的实数的范围内,若存在一个与有关的负数,使得对任意时恒成立,求的最小值及相应的值.
查看答案和解析>>
科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:选择题
执行如图所示的程序框图,输入的N=2014,则输出的S=( )
A.2011 B.2012 C.2013 D.2014
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com